Condiciones de contorno de Dirichlet

Las condiciones de contorno de Dirichlet (condiciones de contorno de primer tipo)  son un tipo de condiciones de contorno que llevan el nombre del matemático alemán P. G. Dirichlet . [1] La condición de Dirichlet, aplicada a ecuaciones diferenciales ordinarias o ecuaciones diferenciales parciales , determina el comportamiento del sistema en la frontera del dominio . El problema de encontrar tales condiciones se llama el problema de Dirichlet .

Definición

Definición de ecuaciones diferenciales ordinarias

Para ecuaciones diferenciales ordinarias , las condiciones de Dirichlet en el límite del intervalo son iguales a y , donde y  son algunas constantes.

Definiciones de ecuaciones diferenciales parciales

Para ecuaciones diferenciales parciales , donde  está el operador de Laplace , las condiciones de contorno en algún dominio son donde  está una función conocida definida en el límite del dominio

Véase también

Notas

  1. Cheng, A. y D. T. Cheng (2005). Herencia e historia temprana del método de elementos de contorno, Engineering Analysis with Boundary Elements , 29 , 268-302.