Cuantificador de existencia

La versión actual de la página aún no ha sido revisada por colaboradores experimentados y puede diferir significativamente de la versión revisada el 23 de noviembre de 2019; la verificación requiere 1 edición .

Un cuantificador existencial ( existential quantifier ) ​​en lógica de predicados es un predicado de propiedad o relación para al menos un elemento del alcance. Denotado por el símbolo del operador lógico ∃ (pronunciado "existe" o "para algunos"). El cuantificador existencial debe distinguirse del cuantificador universal , ya que este último especifica la afirmación de que la propiedad o relación especificada se cumple para todos los elementos del dominio.

El símbolo (del inglés exist - 'existir') para el cuantificador de existencia fue introducido por el matemático italiano Giuseppe Peano en 1897 , y el símbolo que denota el cuantificador universal fue introducido en 1935 por Gerhard Genzen . El concepto había sido propuesto anteriormente, en 1879, en el libro de Gottlob Frege Begriffsschrift ("El cálculo de los conceptos") [1] .

Hay una modificación de este cuantificador, el cuantificador de existencia y unicidad , que es un predicado de propiedad o relación para uno y sólo un elemento del dominio. Denotado ∃! y dice "existe y es el único".

Opciones de lectura

La expresión dice así:

Codificación

grafema Nombre Unicode HTML Látex
EXISTE U+2203 ∃ \exists
NO EXISTE U+2204 ∄ \nexists

Véase también

Notas

  1. Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens . Halle, 1879.