Simetrización de Steiner

Una simetrización de Steiner es una construcción de cierto tipo que asocia una figura arbitraria con una figura con simetría especular. Esta construcción se aplica en la resolución del problema isoperimétrico propuesto por Jakob Steiner en 1838.

Sobre la base de la simetrización de Steiner, se construyeron otras simetrizaciones, que se utilizan en problemas similares.

Definición

Sea un hiperplano y sea  una figura dada en .

Introduzcamos un sistema de coordenadas ortogonales, en el que se describe mediante la ecuación . Para cada punto , denotemos la longitud de la intersección de la perpendicular trazada a través , con el conjunto . Luego, dibujamos a través de un segmento de longitud con un punto medio en , perpendicular a . La unión de tales segmentos es la simetrización de Steiner con respecto a .

Propiedades

donde y  son figuras arbitrarias, y  son sus simetrizaciones con respecto al mismo hiperplano, y  es la métrica de Hausdorff .

Variaciones y generalizaciones

Literatura