Repentinos
Repunits ( ing. repunit , de unidad repetida - unidad repetida) [1] - números naturales , cuyo registro en el sistema numérico base consta de una unidad. En el sistema numérico decimal, las repunits se denotan : , , etc., y la forma general para ellas es:
Los repunits son un caso especial de repdigits .
Factorización de repunits decimales
(Los primos en factorizaciones de color marrón significan que son nuevos primos en factorizaciones R n que no dividen R k para todo k < n [2] )
R1 = _ |
una
|
R2 = _ |
once
|
R3 = _ |
3 37 _
|
R4 = _ |
11 101
|
R5 = _ |
41 271 _
|
R6 = _ |
3 7 11 13 37
|
R7 = _ |
239 4649 _
|
R8 = _ |
11 73 101 137
|
R9 = _ |
3 2 37 333667
|
R10 = _ |
11 41 271 9091
|
|
R11 = _ |
21649 513239 _
|
R12 = _ |
3 7 11 13 37 101 9901
|
R13 = _ |
53 79 265371653 _ _
|
R14 = _ |
11 239 4649 909091
|
R15 = _ |
3 31 37 41 271 2906161
|
R16 = _ |
11 17 73 101 137 5882353
|
R17 = _ |
2071723 5363222357 _
|
R18 = _ |
3 2 7 11 13 19 37 52579 333667
|
R19 = _ |
11111111111111111111
|
R20 = _ |
11 41 101 271 3541 9091 27961
|
|
R21 = _ |
3 37 43 239 1933 4649 10838689
|
R22 = _ |
11 2 23 4093 8779 21649
513239 _ _ |
R23 = _ |
111111111111111111111111
|
R24 = _ |
3 7 11 13 37 73 101 137 9901 99990001
|
R25 = _ |
41 271 21401 25601 182521213001 _
|
R26 = _ |
11 53 79 859 265371653 1058313049
|
R27 = _ |
3 3 37 757 333667 440334654777631
|
R28 = _ |
11 29 101 239 281 4649 909091 121499449
|
R29 = _ |
3191 16763 43037 62003 77843839397 _ _ _ _
|
R30 = _ |
3 7 11 13 31 37 41 211 241 271 2161 9091 2906161
|
|
Propiedades
- Para 2022, solo se conocen 11 repunits simples para n igual a [3] :
2 ,
19 ,
23 ,
317 , 1031, 49081, 86453, 109297, 270343, 5794777, 8177207 ( secuencia
OEIS A004023 )
Obviamente, los índices de repunidad primos también son números primos.
- Como resultado de la multiplicación con , se obtiene un número palindrómico en forma de dígitos con un dígito en el medio.
- Repunit 11 111 111 111 111 111 111 es un número autogenerado .
- Cada múltiplo positivo de repunit contiene al menos n dígitos distintos de cero.
- Repite como la suma de cuadrados consecutivos. El número 1111 se puede representar como la suma de los cuadrados de varios números naturales consecutivos: . Obviamente, la unidad también cumple esta condición. No hay otras repeticiones de este tipo hasta la longitud 251 inclusive.
En la cultura
El asteroide (11111) Repunit lleva el nombre de Repunites , cuyo número de serie es .
Notas
- ↑ Karpushina, 2013 , pág. 134.
- ↑ Secuencia OEIS A102380 _
- ↑ Secuencia OEIS A004023 _
Literatura
- Yates S. La mística de repunits - Math. Mag., 1978, 51, 22-28.
- Yeats S. Repunites and Decimal Periods - World, 1992.
- Kordemsky B. Una hora para la familia de los repentinos // Kvant . - 1997. - Nº 5 . - S. 28-29 .
- N. M. Karpushina. Fuera de formato. Matemáticas entretenidas: ¿gimnasia para la mente o el arte de sorprender?. - M. : ANO Redacción de la revista "Ciencia y Vida", 2013. - S. 115, 132-149. — 288 pág. - ISBN 978-5-904129-07-1 .