Estructura hiperfina : división de líneas espectrales debido a la interacción de la capa de electrones de los átomos con el espín nuclear , así como debido a la existencia de varios isótopos de elementos que difieren en masa y momento magnético del núcleo.
Wolfgang Pauli ofreció una explicación del origen (debido al espín del núcleo) de estas líneas .
El estudio de la estructura hiperfina de las líneas espectrales se puede utilizar para determinar el giro del núcleo, por ejemplo, para un isótopo de sodio estable es 3/2 (en unidades de la constante de Planck ).
La estructura hiperfina de los niveles de energía del átomo de cesio se utiliza en la definición moderna de la unidad de tiempo , el segundo .
Los primeros estudios de la estructura hiperfina se realizaron allá por el siglo XIX: en 1891, Michelson la observó con su interferómetro . En 1897 fue descrito por Fabry y Perot [1] , y posteriormente por Lummer y Gercke [2] . Resultó que cada línea espectral en realidad consta de muchos (hasta 10 o más) componentes estrechamente espaciados.
Paralelamente a esto, se descubrieron isótopos de elementos radiactivos en 1910 y se descubrieron isótopos de elementos estables en 1912. En 1918, Aronberg pudo detectar experimentalmente un cambio isotópico comparando las emisiones de dos muestras de plomo .
En 1924, Pauli sugirió que la división de las líneas espectrales se debe a la interacción de los momentos magnéticos del núcleo atómico y los electrones orbitales [1] .
En 1925, Goudsmit y Uhlenbeck descubrieron el espín del electrón, gracias al cual, en 1927-1928 , Back y Goudsmit pudieron interpretar teóricamente los datos experimentales obtenidos en ese momento. Durante los siguientes tres años, sus resultados fueron complementados y refinados por muchos científicos: Fermi , Bacher , Casimir , Gargreaves y otros trabajaron en esta dirección [4] . De gran importancia para explicar este fenómeno fueron las observaciones precisas de la estructura hiperfina del doblete de la línea D amarilla del sodio, que fueron realizadas en 1928 por A. M. Terenin y L. M. Dobretsov.
Desde principios de la década de 1930, la estructura hiperfina comenzó a estudiarse activamente y, con su ayuda, se determinaron los giros de muchos núcleos. En 1932, se descubrió el neutrón , lo que permitió resolver algunos desacuerdos entre los datos experimentales y teóricos (en primer lugar, esto se refiere a las mediciones del espín de los núcleos de nitrógeno -14, que resultó ser igual a la unidad, sin embargo, basado en el modelo de protón-electrón del núcleo popular en esos años, se suponía que era medio entero; esta contradicción se denominó la "catástrofe del nitrógeno" [5] ).
En 1945, el astrónomo holandés van de Hulst predijo la existencia de una línea de emisión de radio de 21 cm de largo a partir del átomo de hidrógeno , que se forma debido a la transición entre dos niveles de la estructura hiperfina [6] . En 1949, I. S. Shklovsky mostró teóricamente que la intensidad de esta radiación de las nubes interestelares de hidrógeno es suficiente para su observación, y en 1951 se descubrió experimentalmente la radiación. El descubrimiento de esta radiación fue un hito importante en el desarrollo de la radioastronomía .
Gracias a una descripción teórica precisa de la división hiperfina, Lamb y Riserford demostraron en 1947 que las líneas de los espectros reales se desplazan en relación con los teóricos. Este cambio, llamado Lamb shift , resultó estar relacionado con las fluctuaciones cuánticas en el vacío . El descubrimiento de este fenómeno fue el impulso para la creación de la electrodinámica cuántica [7] .
Desde 1967, el estándar del segundo se ha definido exactamente como 9.192.631.770 períodos de radiación correspondientes a la transición entre dos niveles de la estructura hiperfina del átomo de cesio-133 [8] .
Hay varias razones independientes para la división de las líneas espectrales, que se combinan y complican bastante la imagen del espectro.
La interacción entre un electrón y un núcleo está determinada, en primer lugar, por su carga eléctrica, que es la misma para diferentes isótopos . Sin embargo, el electrón no gira alrededor del núcleo, sino alrededor del centro de masa del sistema “núcleo-electrón”, cuya ubicación depende de la masa del núcleo. El cambio del nivel de energía, causado por la masa finita del núcleo, es igual a , donde es el nivel de energía para un núcleo infinitamente masivo. Debido al desdoblamiento (al detectar radiación de una mezcla de isótopos) de este tipo, cada línea espectral se divide en varias líneas, de acuerdo con el número de isótopos del elemento. La distancia entre los niveles de energía de diferentes isótopos en este caso es .
Además, existe el llamado "efecto de masa específica", que se produce cuando muchos electrones se mueven alrededor del núcleo y está asociado a la interacción de intercambio. En virtud del principio de Pauli, el movimiento de los electrones alrededor del núcleo no es independiente, sino que, por el contrario, las funciones de onda de los electrones individuales están interconectadas. La función de onda es antisimétrica, lo que conduce a una contribución adicional a la energía de interacción con el núcleo.
Sin embargo, este esquema solo explica la división de las líneas de elementos con masas atómicas bajas y medias. Para los núcleos pesados, este efecto debería crear cambios muy pequeños que pueden despreciarse, mientras que los experimentos, por el contrario, mostraron que el cambio isotópico es muy notable para los núcleos pesados.
Este cambio se debe al efecto de volumen. De manera simplista, se puede explicar de la siguiente manera: la ley de Coulomb es válida solo para cargas puntuales. Los núcleos reales tienen tamaños distintos de cero, que crecen aproximadamente en proporción a la raíz cúbica del número de nucleones que contiene. Y si el potencial fuera del núcleo es de Coulomb, entonces dentro del núcleo la interacción eléctrica se debilita. De acuerdo con las disposiciones de la mecánica cuántica, el electrón no se encuentra en ninguna órbita en particular, pero con diferentes densidades de probabilidad puede estar en diferentes regiones alrededor del átomo y, en particular, en su núcleo. Con un aumento en el tamaño del núcleo, aumenta la probabilidad de que haya un electrón en su interior y, en consecuencia, disminuye la energía de enlace . Por lo tanto, para los núcleos pesados, un cambio en sus dimensiones geométricas hace una contribución significativa al desdoblamiento [9] .
El momento dipolar magnético del núcleo depende de los momentos orbitales y de espín de los nucleones de la siguiente manera:
pags | norte | |
---|---|---|
gl _ | una | 0 |
gs_ _ | 5.5855 | -3.82629 |
La cantidad se denomina magnetón nuclear , y es una unidad natural de medida del momento magnético del núcleo, ya que la proyección máxima del momento magnético sobre algún eje es siempre proporcional al magnetón nuclear. Por valor, el magnetón nuclear es (es decir, 1836 veces) más pequeño que el magnetón de Bohr y, por lo tanto, los momentos magnéticos de los núcleos también son aproximadamente tres órdenes de magnitud más pequeños que los momentos magnéticos de los electrones.
Si el núcleo de un átomo tiene un momento angular y un electrón tiene un momento angular total (igual a la suma del momento angular orbital y el giro), entonces su momento angular total , dependiendo de su posición relativa, puede tomar todos los valores enteros. en el rango de a
En consecuencia, la energía de interacción de los momentos del núcleo y la capa de electrones también cambia, lo que se puede representar aproximadamente como . Cualitativamente, esto se expresa en el hecho de que cada nivel de energía del electrón, al que corresponde la línea espectral, se divide en o subniveles (respectivamente, si es mayor , o viceversa). Partiendo del hecho de que la interacción entre momentos magnéticos es proporcional al coseno del ángulo entre sus direcciones, la magnitud de este desdoblamiento se puede estimar como:
donde es la magnitud del campo magnético de los electrones en la región del núcleo, depende también de otros números cuánticos; es el momento magnético del núcleo [11] .La distancia máxima entre líneas es así:
si o siLas reglas de selección determinan a qué suborbital puede pasar un electrón y, por lo tanto, qué energía puede liberar (o absorber) en este caso. Una de las reglas define posibles opciones de modificación excepto para el caso
En magnitud, la división hiperfina es tres órdenes de magnitud menor que la distancia entre los componentes de la estructura fina de las líneas espectrales y para el estado fundamental es de varios gigahercios . Para estados excitados, la división hiperfina disminuye inversamente con la energía de enlace del electrón excitado a la potencia de 3/2 [12] .
El momento dipolar eléctrico del núcleo es cero en el estado fundamental , debido a la igualdad del cuadrado de la función de onda del núcleo [13] , sin embargo, el núcleo (si no es esféricamente simétrico) tiene un momento cuadripolar , interacción con lo que conduce a una división adicional de las líneas espectrales [14] . Las divisiones del cuadrupolo son mucho más pequeñas que las asociadas con la interacción magnética.
Al estudiar la estructura hiperfina del espectro, es fácil medir el espín del núcleo; en este caso, es suficiente simplemente calcular el número de líneas en las que se desintegra la línea espectral: será igual a
En el caso de que se conozcan formas más complejas de calcular el espín nuclear.
Regla de espaciadoLos subniveles del nivel energético al que corresponden las líneas espectrales de desdoblamiento hiperfino se caracterizan por los mismos números cuánticos , pero diferentes .
Habiendo así determinado todos los valores que puede tomar el espín nuclear, se puede determinar en base a que el valor máximo [15] .
Comparación de intensidades de líneaEn un campo magnético externo , el comportamiento de un átomo está determinado por el momento total y no por los momentos individuales de los electrones y el núcleo, el átomo puede orientarse en él de varias formas (la proyección del vector tomará valores, respectivamente, de a ). En consecuencia, la degeneración del subnivel de energía también será igual a lo que, siendo iguales las demás condiciones, lleva a que las intensidades de las líneas de la estructura hiperfina también estén relacionadas en la misma proporción. Al comparar estas intensidades, se puede establecer [16] .
Este método resulta ser menos preciso que la regla del intervalo y, por lo tanto, solo tiene sentido cuando el número de líneas en la estructura hiperfina de un determinado nivel de energía es inferior a tres. Tal caso es típico de los metales alcalinos , por ejemplo, sodio.
El principal nivel de energía del hidrógeno se divide en dos subniveles cercanos, dependiendo de si las direcciones de los espines del núcleo y el electrón del estado fundamental del átomo de hidrógeno son paralelas o antiparalelas. Durante la transición entre estos niveles, se emite un fotón con una frecuencia de 1420,4 MHz , que corresponde a una longitud de onda de 21,1 cm.7 años [ 6 ] . La energía para la transición inversa corresponde a una temperatura de solo 0,068 K, por lo que dicha transición ocurre cuando los átomos de hidrógeno chocan entre sí incluso en nubes muy frías de hidrógeno interestelar atómico o con fotones de radiación cósmica de fondo . Como resultado, en las nubes de hidrógeno neutro interestelar se establece un equilibrio dinámico entre los átomos en los estados excitado y no excitado.
Aunque la densidad de energía de dicha radiación por unidad de volumen es muy baja, debido a la prevalencia del hidrógeno en el espacio interestelar del Universo, los estudios de radiación a esta frecuencia proporcionan información importante sobre la distribución de la materia (hidrógeno) en el espacio.
Debido a su alta precisión y estabilidad, las transiciones de nivel de estructura ultrafina se utilizan para una medición de tiempo muy precisa. Una variante común es el generador de frecuencia de hidrógeno, que utiliza la transición descrita anteriormente entre los niveles de la estructura hiperfina del hidrógeno en un campo magnético débil, durante el cual se emite radiación electromagnética con una longitud de onda de 21,1 cm. [17] .
A pesar de la distancia muy pequeña entre las líneas, la resolución incluso de interferómetros simples como el interferómetro de Fabry-Perot es suficiente para separarlas. La principal dificultad es el ancho de las propias líneas. El ensanchamiento Doppler , debido al efecto Doppler de los átomos debido a su movimiento térmico, hace que el ancho de las líneas sea mayor que la distancia entre ellas [18] . Por ejemplo, para resolver completamente la división hiperfina de las líneas de sodio, debe enfriarse a 5 K, lo que es difícil de implementar en la práctica, porque estos átomos están constantemente excitados por la luz. Para resolver este problema, se pueden utilizar haces de átomos rápidos que se mueven perpendicularmente a la dirección del haz de observación. Para los átomos más pesados, las tasas de movimiento térmico son más lentas, por lo que se puede usar una descarga luminiscente convencional para excitar la radiación .