Análisis de conglomerados
El análisis de conglomerados es un procedimiento estadístico multidimensional que recopila datos que contienen información sobre una muestra de objetos y luego organiza los objetos en grupos relativamente homogéneos [1] [2] [3] [4] . El problema de la agrupación se refiere al procesamiento estadístico y también a una amplia clase de problemas de aprendizaje no supervisados .
La mayoría de los investigadores (ver, por ejemplo, [5] ) se inclinan a creer que por primera vez el término "análisis de conglomerados" ( inglés cluster - bunch, clot, bundle) fue propuesto por el psicólogo R. Tryon [6] . Posteriormente, surgieron una serie de términos que actualmente se consideran sinónimos del término "análisis de conglomerados": clasificación automática, botriología.
El abanico de aplicaciones del análisis de conglomerados es muy amplio: se utiliza en arqueología , medicina , psicología , química , biología , administración pública , filología , antropología , marketing , sociología , geología y otras disciplinas. Sin embargo, la universalidad de la aplicación ha llevado a la aparición de una gran cantidad de términos, métodos y enfoques incompatibles que dificultan el uso inequívoco y la interpretación coherente del análisis de conglomerados.
Tareas y condiciones
El análisis de conglomerados realiza las siguientes tareas principales:
- Desarrollo de una tipología o clasificación.
- Explorar esquemas conceptuales útiles para agrupar objetos.
- Generación de hipótesis a partir de la exploración de datos.
- Pruebas de hipótesis o investigación para determinar si los tipos (grupos) identificados de una forma u otra están realmente presentes en los datos disponibles.
Independientemente del tema de estudio, el uso del análisis de conglomerados implica los siguientes pasos:
- Muestreo para agrupamiento. Se entiende que tiene sentido agrupar solo datos cuantitativos.
- Definición de un conjunto de variables por las que se evaluarán los objetos de la muestra, es decir, un espacio de características.
- Cálculo de los valores de una u otra medida de similitud (o diferencia) entre objetos.
- Aplicación del método de análisis de conglomerados para crear grupos de objetos similares.
- Validación de los resultados de la solución clúster.
Puede encontrar una descripción de dos requisitos fundamentales para los datos: uniformidad e integridad. La homogeneidad requiere que todas las entidades agrupadas sean de la misma naturaleza, descritas por un conjunto similar de características [7] . Si el análisis de conglomerados está precedido por un análisis factorial , entonces la muestra no necesita ser "reparada": los requisitos establecidos se realizan automáticamente mediante el propio procedimiento de modelado factorial (hay otra ventaja: la estandarización z sin consecuencias negativas para la muestra; si se lleva a cabo directamente para el análisis de conglomerados, puede resultar en una disminución en la claridad de la separación de grupos). De lo contrario, la muestra debe ser ajustada.
Tipología de problemas de agrupamiento
Tipos de datos de entrada
- Descripción indicativa de objetos. Cada objeto se describe por un conjunto de sus características, llamadas características . Las características pueden ser numéricas o no numéricas.
- Matriz de distancia entre objetos. Cada objeto se describe por distancias a todos los demás objetos en el espacio métrico .
- Matriz de similitud entre objetos [8] . Se tiene en cuenta el grado de similitud del objeto con otros objetos de la muestra en el espacio métrico. La similitud aquí complementa la distancia (diferencia) entre los objetos a 1.
En la ciencia moderna, se utilizan varios algoritmos para procesar datos de entrada. El análisis mediante la comparación de objetos basados en características (más común en las ciencias biológicas) se denomina análisis de tipo Q y, en el caso de comparar características basadas en objetos, análisis de tipo R. Hay intentos de utilizar tipos híbridos de análisis (por ejemplo, análisis RQ ), pero esta metodología aún no se ha desarrollado adecuadamente.
Objetivos de la agrupación
- Comprender los datos mediante la identificación de la estructura del clúster. La división de la muestra en grupos de objetos similares permite simplificar aún más el procesamiento de datos y la toma de decisiones al aplicar su propio método de análisis a cada conglomerado (la estrategia de “ divide y vencerás ”).
- Compresión de datos . Si la muestra inicial es excesivamente grande, entonces se puede reducir, dejando uno de los representantes más típicos de cada conglomerado.
- Detección de novedad . _ _ Se seleccionan objetos atípicos que no se pueden adjuntar a ninguno de los grupos.
En el primer caso, intentan reducir el número de clústeres. En el segundo caso, es más importante asegurar un alto grado de similitud de los objetos dentro de cada grupo, y puede haber cualquier número de grupos. En el tercer caso, los objetos individuales que no encajan en ninguno de los grupos son los de mayor interés.
En todos estos casos, se puede aplicar el agrupamiento jerárquico , cuando los clústeres grandes se dividen en otros más pequeños, que, a su vez, se dividen aún más pequeños, etc. Tales tareas se denominan tareas de taxonomía . El resultado de la taxonomía es una estructura jerárquica en forma de árbol. Además, cada objeto se caracteriza por una enumeración de todos los grupos a los que pertenece, generalmente de mayor a menor.
Métodos de agrupamiento
No existe una clasificación generalmente aceptada de los métodos de agrupamiento, pero se pueden distinguir varios grupos de enfoques (algunos métodos pueden atribuirse a varios grupos a la vez y, por lo tanto, se propone considerar esta tipificación como una aproximación a la clasificación real del agrupamiento). métodos) [9] :
- Enfoque probabilístico . Se supone que cada objeto bajo consideración pertenece a una de las k clases. Algunos autores (por ejemplo, A. I. Orlov) creen que este grupo no pertenece en absoluto al agrupamiento y lo oponen bajo el nombre de "discriminación", es decir, la elección de asignar objetos a uno de los grupos conocidos (muestras de entrenamiento).
- Enfoques basados en sistemas de inteligencia artificial: un grupo muy condicionado, ya que hay muchos métodos y metodológicamente son muy diferentes.
- enfoque lógico. La construcción de un dendograma se realiza mediante un árbol de decisión.
- Enfoque teórico de grafos.
- Enfoque jerárquico. Se supone la presencia de grupos anidados (clusters de diferentes órdenes). Los algoritmos, a su vez, se dividen en aglomerativos (unificadores) y divisivos (separadores). Según el número de características, a veces se distinguen métodos de clasificación monotéticos y politéticos.
- Clustering divisional jerárquico o taxonomía. Los problemas de agrupamiento se tratan en taxonomía cuantitativa .
- Otros metodos. No incluidos en los grupos anteriores.
- Algoritmos de agrupamiento estadístico
- Conjunto de agrupadores
- Algoritmos de la familia KRAB
- Algoritmo basado en el método de tamizado
- DBSCAN, etc.
Los enfoques 4 y 5 a veces se combinan bajo el nombre de enfoque estructural o geométrico, que tiene un concepto más formalizado de proximidad [10] . A pesar de las diferencias significativas entre los métodos enumerados, todos se basan en la " hipótesis de compacidad " original : en el espacio de objetos, todos los objetos cercanos deben pertenecer al mismo grupo y todos los objetos diferentes, respectivamente, deben estar en grupos diferentes.
Declaración formal del problema de agrupamiento
Sea un conjunto de objetos, sea un conjunto de números (nombres, etiquetas) de grupos. Se da la función de distancia entre objetos . Hay un conjunto finito de objetos de entrenamiento . Es necesario dividir la muestra en subconjuntos que no se superpongan, llamados conglomerados , de modo que cada conglomerado esté formado por objetos que tengan una métrica similar y los objetos de diferentes conglomerados difieran significativamente. En este caso, a cada objeto
se le asigna un número de grupo .
El algoritmo de agrupamiento es una función que asocia cualquier objeto con un número de clúster . El conjunto en algunos casos se conoce de antemano, pero más a menudo la tarea es determinar el número óptimo de conglomerados, en términos de uno u otro criterio de calidad de conglomerado.
El agrupamiento ( aprendizaje no supervisado ) difiere de la clasificación ( aprendizaje supervisado ) en que las etiquetas de los objetos originales no se establecen inicialmente, y el conjunto mismo puede incluso ser desconocido .
La solución del problema de la agrupación es fundamentalmente ambigua, y esto se debe a varias razones (según varios autores):
- no existe un criterio excepcionalmente mejor para la calidad del agrupamiento. Se conocen una serie de criterios heurísticos , así como una serie de algoritmos que no tienen un criterio claramente definido, pero realizan un agrupamiento “por construcción” bastante razonable. Todos ellos pueden dar resultados diferentes. Por lo tanto, para determinar la calidad de la agrupación, se requiere un experto en el tema, que pueda evaluar la significatividad de la selección de las agrupaciones.
- el número de conglomerados generalmente se desconoce de antemano y se establece de acuerdo con algún criterio subjetivo. Esto es cierto solo para los métodos de discriminación, ya que en los métodos de agrupación, los grupos se seleccionan mediante un enfoque formalizado basado en medidas de proximidad.
- el resultado de la agrupación depende significativamente de la métrica, cuya elección, por regla general, también es subjetiva y la determina un experto. Pero hay una serie de recomendaciones para elegir medidas de proximidad para diversas tareas.
Aplicación
En biología
En biología, la agrupación tiene muchas aplicaciones en una amplia variedad de campos. Por ejemplo, en bioinformática , se utiliza para analizar redes complejas de genes que interactúan, que a veces constan de cientos o incluso miles de elementos. El análisis de conglomerados le permite identificar subredes, cuellos de botella, concentradores y otras propiedades ocultas del sistema en estudio, lo que finalmente le permite descubrir la contribución de cada gen a la formación del fenómeno en estudio.
En el campo de la ecología, se usa ampliamente para identificar grupos espacialmente homogéneos de organismos, comunidades, etc. Con menos frecuencia, los métodos de análisis de conglomerados se usan para estudiar comunidades a lo largo del tiempo. La heterogeneidad de la estructura de las comunidades conduce a la aparición de métodos no triviales de análisis de conglomerados (por ejemplo, el método Czekanowski ).
Históricamente, las medidas de similitud se usan más comúnmente como medidas de proximidad en biología , en lugar de medidas de diferencia (distancia).
En sociología
Al analizar los resultados de la investigación sociológica, se recomienda realizar el análisis utilizando los métodos de una familia aglomerante jerárquica, a saber, el método de Ward, en el que se optimiza la dispersión mínima dentro de los conglomerados, como resultado, conglomerados de tamaños aproximadamente iguales. son creados. El método de Ward es el más exitoso para el análisis de datos sociológicos. Como medida de diferencia, la distancia euclidiana cuadrática es mejor, lo que contribuye a un aumento en el contraste de los conglomerados. El principal resultado del análisis de conglomerados jerárquicos es un dendrograma o "diagrama de carámbano". Al interpretarlo, los investigadores se enfrentan a un problema del mismo tipo que la interpretación de los resultados del análisis factorial: la falta de criterios inequívocos para identificar grupos. Se recomienda utilizar dos métodos como los principales: análisis visual del dendrograma y comparación de los resultados del agrupamiento realizado por diferentes métodos.
El análisis visual del dendrograma implica "cortar" el árbol al nivel óptimo de similitud de los elementos de la muestra. La "rama de vid" (terminología de M. S. Oldenderfer y R. K. Blashfield [11] ) debe "cortarse" en la marca 5 de la escala Rescaled Distance Cluster Combine, por lo que se logrará un nivel de similitud del 80 %. Si la selección de grupos por esta etiqueta es difícil (varios grupos pequeños se fusionan en uno grande), entonces puede elegir otra etiqueta. Esta técnica es propuesta por Oldenderfer y Blashfield.
Ahora surge la cuestión de la estabilidad de la solución de clúster adoptada. De hecho, verificar la estabilidad del agrupamiento se reduce a verificar su confiabilidad. Aquí hay una regla general: se conserva una tipología estable cuando cambian los métodos de agrupación. Los resultados del análisis de conglomerados jerárquicos se pueden verificar mediante un análisis de conglomerados iterativo de k-medias. Si las clasificaciones comparadas de grupos de encuestados tienen una proporción de coincidencias de más del 70% (más de 2/3 de coincidencias), entonces se toma una decisión de conglomerado.
Es imposible comprobar la adecuación de la solución sin recurrir a otro tipo de análisis. Al menos teóricamente, este problema no ha sido resuelto. El análisis de conglomerados clásico de Oldenderfer y Blashfield elabora y finalmente rechaza cinco métodos de prueba de robustez adicionales:
- correlación cofenética - no recomendado y de uso limitado;
- pruebas de significancia (análisis de varianza) - siempre dan un resultado significativo;
- la técnica de muestras repetidas (aleatorias), que, sin embargo, no prueba la validez de la decisión;
- las pruebas de significancia para características externas solo son adecuadas para mediciones repetidas;
- Los métodos de Monte Carlo son muy complejos y solo accesibles para matemáticos experimentados. .
En informática
- Agrupación de resultados de búsqueda : se utiliza para la agrupación "inteligente" de resultados al buscar archivos , sitios web y otros objetos , lo que brinda al usuario la capacidad de navegar rápidamente, seleccionar un subconjunto conocido más relevante y excluir uno conocido menos relevante, lo que puede aumentar la facilidad de uso. de la interfaz en comparación con la salida en forma de una simple lista ordenada por relevancia .
- Segmentación de imágenes ( ing. segmentación de imágenes ): el agrupamiento se puede utilizar para dividir una imagen digital en áreas separadas para detectar límites ( ing. detección de bordes ) o reconocimiento de objetos .
- Minería de datos : la agrupación en clústeres en Minería de datos se vuelve valiosa cuando actúa como una de las etapas del análisis de datos, construyendo una solución analítica completa . A menudo es más fácil para un analista identificar grupos de objetos similares, estudiar sus características y construir un modelo separado para cada grupo que crear un modelo general para todos los datos. Esta técnica se usa constantemente en marketing, destacando grupos de clientes, compradores, bienes y desarrollando una estrategia separada para cada uno de ellos.
Véase también
Notas
- ↑ Aivazyan S. A., Buchstaber V. M., Enyukov I. S., Meshalkin L. D. Estadística aplicada: Clasificación y reducción de dimensionalidad. - M .: Finanzas y estadísticas, 1989. - 607 p.
- ↑ Mandel I. D. Análisis de conglomerados. — M.: Finanzas y estadísticas, 1988. — 176 p.
- ↑ Khaidukov D.S. Aplicación del análisis de conglomerados en la administración pública // Filosofía de las matemáticas: problemas reales. — M.: MAKS Press, 2009. — 287 p.
- ↑ Clasificación y clúster. ed. J. Wen Raizina. M.: Mir, 1980. 390 p.
- ↑ Mandel I. D. Análisis de conglomerados. - M .: Finanzas y estadísticas, 1988. - P. 10.
- ↑ Análisis de conglomerados de RC de Tryon . - Londres: Ann Arbor Edwards Bros, 1939. - 139 p.
- ↑ Zhambyu M. Correspondencias y análisis de conglomerados jerárquicos. — M.: Finanzas y estadísticas, 1988. — 345 p.
- ↑ Duran B., Odell P. Análisis de conglomerados. — M.: Estadísticas, 1977. — 128 p.
- ↑ Berikov V. S., Lbov G. S. Modern Trends in Cluster Analysis Copia de archivo fechada el 10 de agosto de 2013 en Wayback Machine // Selección competitiva de toda Rusia de artículos analíticos y de revisión en la dirección prioritaria "Sistemas de información y telecomunicaciones", 2008. - 26 p. . .
- ↑ Vyatchenin D. A. Métodos borrosos de clasificación automática. - Minsk: Technoprint, 2004. - 219 p.
- ↑ Oldenderfer M.S., Blashfield R.K. Análisis de conglomerados/Análisis factorial, discriminante y de conglomerados: per. De inglés; Por debajo. edición I. S. Enyukova. — M.: Finanzas y estadísticas, 1989—215 p.
Enlaces
En ruso
- www.MachineLearning.ru es un recurso wiki profesional dedicado al aprendizaje automático y la minería de datos
En inglés
- COMPACT: paquete comparativo para la evaluación de agrupamiento Archivado el 26 de febrero de 2007 en Wayback Machine . Un paquete gratuito de Matlab, 2006.
- P. Berkhin, Survey of Clustering Data Mining Techniques Archivado el 17 de enero de 2007 en Wayback Machine , Accrue Software, 2002.
- Jain, Murty y Flynn: Agrupación de datos: una revisión Archivado el 3 de febrero de 2007 en Wayback Machine , ACM Comp. Surv., 1999.
- Para ver otra presentación de jerárquicos, k-means y fuzzy c-means, consulte esta introducción al agrupamiento . Archivado el 29 de enero de 2007 en Wayback Machine . También tiene una explicación sobre la mezcla de gaussianas .
- David Dowe, página de modelado de mezclas Archivado el 5 de abril de 2007 en Wayback Machine : otros enlaces de modelos de agrupamiento y mezcla.
- un tutorial sobre agrupamiento [1] (enlace descendente desde el 13/05/2013 [3454 días] - historial )
- El libro de texto en línea: teoría de la información, inferencia y algoritmos de aprendizaje . Archivado el 6 de febrero de 2015 en Wayback Machine , por David JC MacKay . vista del algoritmo EM.
- Una descripción general de la agrupación en clústeres no paramétrica y la visión por computadora
- "El gen autoorganizado" , tutorial que explica la agrupación a través del aprendizaje competitivo y los mapas autoorganizados.
- kernlab (enlace descendente desde el 13-05-2013 [3454 días] - historial ) – Paquete R para aprendizaje automático basado en kernel (incluye implementación de agrupación espectral)
- Tutorial Archivado el 29 de diciembre de 2007 en Wayback Machine - Tutorial con introducción de algoritmos de agrupamiento (k-means, fuzzy-c-means, jerárquico, mezcla de gaussianos) + algunas demostraciones interactivas (applets de Java)
- Software de minería de datos Archivado el 24 de junio de 2017 en Wayback Machine . El software de minería de datos utiliza con frecuencia técnicas de agrupación.
- Aplicación de aprendizaje competitivo de Java (enlace descendente desde el 13/05/2013 [3454 días] - historial ) Un conjunto de redes neuronales no supervisadas para agrupamiento. Escrito en Java. Completo con todo el código fuente.
- Software de aprendizaje automático Archivado el 3 de abril de 2018 en Wayback Machine . También contiene mucho software de agrupación.
- Algoritmos de agrupamiento difuso y su aplicación al análisis de imágenes médicas Tesis doctoral, 2001, por AI Shihab. Archivado el 27 de septiembre de 2007 en Wayback Machine .
- Cluster Computing y MapReduce Lecture 4 Archivado el 14 de enero de 2019 en Wayback Machine .
- Biblioteca PyClustering Archivada el 11 de junio de 2018 en Wayback Machine . La biblioteca de Python contiene algoritmos de agrupamiento (también se puede usar el código fuente de C++; CCORE es parte de la biblioteca) y una colección de redes neuronales y oscilatorias con ejemplos y demostraciones.
diccionarios y enciclopedias |
|
---|
En catálogos bibliográficos |
|
---|