El lema de Hadamard ( en inglés Hadamard's lemma , en francés Lemme de Hadamard ) es un enunciado que describe la estructura de una función real suave. Nombrado en honor al matemático francés Jacques Hadamard [1] .
Sea una función de la clase , donde , definida en una vecindad convexa del punto . Entonces hay funciones de la clase , definidas en , tales que la igualdad se cumple para todo [1] |
Si la función es analítica, entonces las funciones de la fórmula anterior son analíticas.
El lema de Hadamard se puede formular de una forma más general, cuando algunas de las variables juegan el papel de parámetros:
Sea una función de la clase , donde , definida en una vecindad convexa del punto , y . Entonces hay funciones de la clase definidas en tal que la igualdad se cumple para todos |
prueba _
Considere la función auxiliar , donde es una variable real adicional (parámetro). Vamos a correr a través de los valores del segmento , luego la función , considerada como una función para cada valor fijo del parámetro , corre en el espacio de funciones de variables alguna curva con extremos y .
Considerando en función de la variable dependiente de los parámetros y , y aplicando la fórmula de Newton-Leibniz , podemos escribir:
dónde
La suavidad requerida de las funciones se deriva del conocido teorema sobre la diferenciación de una integral en función de un parámetro, que se demuestra en el curso del análisis matemático.
El lema de Hadamard nos permite obtener una serie de consecuencias útiles que encuentran aplicaciones en varias ramas de las matemáticas, principalmente en la teoría de las singularidades .
donde y son funciones suaves y es un número natural arbitrario.