Ángulo sólido

La versión actual de la página aún no ha sido revisada por colaboradores experimentados y puede diferir significativamente de la versión revisada el 7 de diciembre de 2019; las comprobaciones requieren 2 ediciones .

Un ángulo sólido  es una parte del espacio que es la unión de todos los rayos que salen de un punto dado ( el vértice del ángulo) y se cruzan con alguna superficie (que se llama la superficie que subtiende el ángulo sólido dado). Los casos particulares del ángulo sólido son los ángulos triédricos y poliédricos . El límite del ángulo sólido es una superficie cónica . El ángulo sólido generalmente se denota con la letra Ω .

El ángulo sólido se mide por la relación entre el área de la parte de la esfera centrada en el vértice del ángulo, que es cortada por este ángulo sólido, al cuadrado del radio de la esfera:

Los ángulos sólidos se miden mediante cantidades abstractas (adimensionales). La unidad SI del ángulo sólido es el estereorradián , que es igual al ángulo sólido que corta una superficie con área r 2 de una esfera de radio r . Una esfera completa forma un ángulo sólido igual a estereorradianes ( ángulo sólido completo ) para un vértice ubicado dentro de la esfera, específicamente para el centro de la esfera; el mismo es el ángulo sólido bajo el cual cualquier superficie cerrada es visible desde un punto completamente encerrado por esta superficie, pero que no pertenece a ella. Además de los estereorradianes, el ángulo sólido se puede medir en grados cuadrados, minutos cuadrados y segundos cuadrados, así como en fracciones de un ángulo sólido completo.

El ángulo sólido tiene dimensión física cero .

El ángulo sólido dual a un ángulo sólido dado Ω se define como un ángulo que consta de rayos que forman un ángulo no agudo con cualquier rayo del ángulo Ω .

Coeficientes para convertir unidades de ángulo sólido.

estereorradián cuadrados la licenciatura cuadrados minuto cuadrados segundo ángulo completo
1 estereorradián = una (180/π)² ≈
≈ 3282,806 cuadrados. grados
(180×60/π)² ≈
≈ 1.1818103⋅10 7 cuadrados. minutos
(180×60×60/π)² ≈
≈ 4.254517⋅10 10 cuadrados. segundos
1/4π ≈
≈ 0.07957747 ángulo completo
1 cuadrado grado = (π/180)² ≈
≈ 3,0461742⋅10 −4 estereorradianes
una 60² =
= 3600 metros cuadrados minutos
(60×60)² =
= 12,960,000 pies cuadrados segundos
π/(2×180)² ≈
≈ 2.424068⋅10 −5 ángulo completo
1 cuadrado minuto = (π/(180×60))² ≈
≈ 8,461595⋅10 −8 estereorradianes
1/60² ≈
≈ 2,7777778⋅10 −4 cuadrados. grados
una 60² =
= 3600 metros cuadrados segundos
π/(2×180×60)² ≈
≈ 6.73352335⋅10 −9 ángulo completo
1 cuadrado segundo = (π/(180×60×60))² ≈
≈ 2,35044305⋅10 −11 estereorradianes
1/(60×60)² ≈
≈ 7.71604938⋅10 −8 cuadrados. grados
1/60² ≈
≈ 2,7777778⋅10 −4 cuadrados. minutos
una π/(2×180×60×60)² ≈
≈ 1.87042315⋅10 −12 ángulo completo
ángulo completo = 4π ≈
≈ 12,5663706 estereorradianes
(2×180)²/π ≈
≈ 41252.96125 cuadrados. grados
(2×180×60)²/π ≈
≈ 1.48511066⋅10 8 cuadrados. minutos
(2×180×60×60)²/π ≈
≈ 5.34638378⋅10 11 cuadrados. segundos
una

Cálculo de ángulos sólidos

Para una superficie de contracción arbitraria S , el ángulo sólido Ω bajo el cual es visible desde el origen es igual a

donde  son las coordenadas esféricas del elemento de superficie,  es su radio vector ,  es el vector unitario normal a

Propiedades de los ángulos sólidos

  1. El ángulo sólido completo (esfera completa) es de 4 π estereorradianes.
  2. La suma de todos los ángulos sólidos duales a los ángulos sólidos interiores de un poliedro convexo es igual al ángulo completo.

Valores de algunos ángulos sólidos

donde  es el producto mixto de estos vectores,  son los productos escalares de los vectores correspondientes, el tipo en negrita denota vectores y el tipo normal denota sus longitudes. Usando esta fórmula, uno puede calcular los ángulos sólidos subtendidos por polígonos arbitrarios con coordenadas conocidas de los vértices (para hacer esto, es suficiente dividir el polígono en triángulos que no se cortan). donde  está el semiperímetro. En términos de ángulos diédricos, un ángulo sólido se expresa como: a a donde y son las integrales de Legendre elípticas normales completas de primera y tercera clase, respectivamente; es la distancia desde el centro de la base del cono hasta la proyección de la parte superior del cono sobre el plano de la base; es la altura del cono; es la longitud de la máxima generatriz del cono;

Literatura

Véase también

Notas

  1. Paxton F. Cálculo de ángulo sólido para un disco circular  //  Revisión de instrumentos científicos. - 1959. - Abril ( vol. 30 , no. 4 ). - pág. 254-258 . -doi : 10.1063/ 1.1716590 . - . Archivado desde el original el 7 de agosto de 2017.