Agujero

Agujero
Símbolo: h ( agujero ing.  )

Cuando un electrón abandona un átomo de helio, queda un hueco en su lugar. En este caso, el átomo se carga positivamente.
Compuesto: cuasipartícula
Clasificación: Agujeros ligeros , agujeros pesados
¿Quién y/o qué lleva el nombre? Ausencia de un electrón
          0Números cuánticos :
Carga electrica : +1 carga elemental
girar : Determinado por el espín del electrón en la banda de valencia ħ

Un hueco  es una cuasipartícula , portadora de una carga positiva igual a la carga elemental , en los semiconductores . La noción de una cuasipartícula con carga positiva y masa efectiva positiva no es más que un reemplazo terminológico de la noción de una partícula real con carga negativa y masa efectiva negativa [K 1] .

La definición del término "agujero" según GOST 22622-77: "Un enlace de valencia vacío, que se manifiesta como una carga positiva, numéricamente igual a la carga de un electrón" [1] .

El concepto de hueco se introduce en la teoría de bandas de un estado sólido para describir fenómenos electrónicos en una banda de valencia no completamente llena de electrones .

El espectro electrónico de la banda de valencia a menudo contiene varias bandas que difieren en la posición efectiva de masa y energía (las bandas de energía de los agujeros ligeros y pesados, la banda de los agujeros separados orbitalmente ).

Agujeros en la física del estado sólido

En la física del estado sólido, un hueco es la ausencia de un electrón en una banda de valencia casi completamente llena . En cierto sentido, el comportamiento de un agujero en un semiconductor es similar al de una burbuja en una botella llena de agua [2] .

Para crear una concentración notable de agujeros en los semiconductores, se utiliza el dopaje del semiconductor con impurezas aceptoras .

Además, los agujeros pueden aparecer en un semiconductor intrínseco (no dopado) debido a la excitación de los electrones y su transición de la banda de valencia a la banda de conducción como resultado de influencias externas: calentamiento, iluminación con luz suficiente (superación de la banda prohibida ) energía fotónica , o irradiación del semiconductor con radiación ionizante .

En el caso de una interacción de Coulomb, un hueco con un electrón de la banda de conducción puede formar un estado ligado, una cuasipartícula , llamado excitón .

Analogía simplificada del agujero

La conducción de agujeros se puede explicar usando la siguiente analogía: hay una fila de asientos con personas sentadas en la audiencia, y todos los asientos de la fila están ocupados. Si alguien en algún lugar del medio de la fila quiere irse, trepa por el respaldo de la silla a la siguiente fila de sillas libres y se va. Aquí, una fila vacía es un análogo de la banda de conducción , y una persona fallecida puede compararse con un electrón libre. Imagina que alguien más vino y quiere sentarse. El escenario es difícil de ver desde la fila vacía, por lo que no se sienta allí. Pero no puede tomar un asiento vacante en una fila completa, ya que está ubicado muy adentro de la fila. Para acomodar a un nuevo espectador, se cambia a una persona sentada cerca de una silla libre, se reemplaza en la silla vacante a otra persona de la próxima a la vacante, y esto se repite por todos los vecinos con una silla vacía. Por lo tanto, el espacio vacío, por así decirlo, se desplaza hacia el borde de la fila. Cuando este asiento vacío está al lado de un nuevo espectador, puede sentarse.

En este proceso, cada sentado se movía. Si los espectadores tuvieran una carga negativa, dicho movimiento podría compararse con la conducción eléctrica . Si, además, en este modelo suponemos que las sillas tienen carga positiva y las personas tienen carga negativa, y sus cargas son iguales en valor absoluto, entonces solo el espacio libre tendrá una carga total distinta de cero. Este es un modelo aproximado para explicar la conducción por huecos .

Sin embargo, de hecho, debido a la naturaleza ondulatoria del electrón y las propiedades de la red cristalina, el agujero no se localiza en un lugar determinado, como se describió anteriormente, sino que se “mancha” sobre una parte del cristal de muchos cientos de tamaños. de la celda unitaria del cristal .

Descripción más detallada

El modelo anterior de un agujero en forma de personas moviéndose en la audiencia está muy simplificado y no puede explicar por qué los agujeros se comportan en un sólido como partículas cargadas positivamente con una cierta masa, que se manifiesta a nivel macroscópico en el efecto Hall. y el efecto Seebeck . Una explicación más precisa y detallada desde el punto de vista de la mecánica cuántica se da a continuación [3] .

Consideración mecánica cuántica de los electrones en un sólido

En mecánica cuántica, los electrones se pueden considerar como ondas de Broglie , y la energía de un electrón se puede considerar como la frecuencia de estas ondas.

Un electrón localizado es un paquete de ondas, y el movimiento de un electrón como partícula separada se determina a través de la fórmula para la velocidad del grupo de paquetes de ondas .

El campo eléctrico aplicado actúa sobre el electrón, desplazando todos los vectores de onda en el paquete de ondas, y el electrón se acelera cuando cambia la velocidad de grupo de su onda. La relación de dispersión determina cómo reaccionan los electrones a las fuerzas (usando el concepto de masa efectiva). La relación de dispersión es una expresión de la relación entre el vector de onda (o k -vector, cuyo módulo se denomina número de onda ) y la energía de un electrón en cualquiera de las bandas permitidas. Por tanto, la respuesta de un electrón a una fuerza externa aplicada está completamente determinada por su relación de dispersión. Un electrón libre tiene la relación de dispersión , donde  es la masa de un electrón en reposo en el vacío,  es la constante de Planck reducida .

Cerca de la parte inferior de la banda de conducción de un semiconductor, la relación de dispersión incluye la masa efectiva del electrón , por lo que un electrón con una energía cerca de la parte inferior de la banda de conducción reacciona a una fuerza externa aplicada como una partícula ordinaria con una masa efectiva positiva. - con un aumento en el número de onda, aumenta la energía, que se expresa en el gráfico en la flexión de la parte inferior de la banda de conducción hacia arriba; denotada por la energía del fondo (borde inferior) de la zona.

Los electrones con energías cerca de la parte superior ("techo") de la banda de valencia , cuando se aplica una fuerza, se comportan como si tuvieran masa negativa, porque a medida que aumenta el número de onda, la energía disminuye. En este caso, en el caso más simple, la relación de dispersión se escribe como

.

El símbolo denota la masa efectiva del agujero. Para evitar el uso de masas negativas, se sustituye un menos en la relación.

Por lo tanto, los electrones en la parte de energía superior de la banda de valencia se mueven en la dirección opuesta a la fuerza, y este movimiento no está determinado por si la banda está llena o no, sino solo por la dependencia de la energía en el número de onda: a medida que aumenta el número de onda, la energía disminuye, lo que se expresa en el gráfico en la curva de la banda de valencia superior hacia abajo. Si fuera físicamente posible eliminar todos los electrones de la banda de valencia y colocar allí solo un electrón con una energía cercana al máximo de la banda de valencia, entonces este electrón se movería en dirección opuesta a la fuerza externa.

La dependencia puede tener una forma más compleja que parabólica y también ser ambigua. Para muchos materiales, existen dos ramas del espectro de energía de la banda de valencia, que corresponden a dos masas efectivas diferentes y . Los agujeros que ocupan estados con una masa más grande se llaman agujeros pesados , y con una masa más pequeña, agujeros ligeros (designaciones hh, lh - del inglés heavy hole, light hole ).  

Conductividad en la banda de valencia

La banda de valencia completamente llena de electrones no participa en la conductividad eléctrica del semiconductor.

Una explicación para este fenómeno es que los estados electrónicos cerca de la parte superior de la banda de valencia tienen una masa efectiva negativa, mientras que los estados electrónicos en la profundidad de la banda de valencia tienen una masa efectiva positiva. Cuando se aplica una fuerza externa, provocada, por ejemplo, por un campo eléctrico sobre los electrones de la banda de valencia, surgen dos corrientes iguales y de sentido contrario que se compensan mutuamente y la densidad de corriente total resultante es cero, es decir, el material se comporta como un aislante.

Si se elimina un electrón de la banda de valencia, que está completamente llena de estados electrónicos, se alterará el equilibrio de las corrientes. Cuando se aplica un campo, el movimiento de los electrones con una masa efectiva negativa que se mueve en la dirección opuesta (en relación con los electrones con una masa efectiva positiva) es equivalente al movimiento de una carga positiva con una masa efectiva positiva en la misma dirección.

El hueco en la parte superior de la banda de valencia se moverá en la misma dirección que el electrón cerca de la parte superior de la banda de valencia y, por lo tanto, la analogía con el auditorio no encaja aquí, ya que la silla vacía en ese modelo se mueve en dirección opuesta al dirección de la transferencia de personas y tiene "masa cero", en el caso de los electrones en la banda de valencia, los electrones se mueven en el espacio de los vectores de onda y la fuerza aplicada mueve todos los electrones de la banda de valencia en el espacio de los vectores de onda , y no en el espacio real, existe una analogía más cercana con una burbuja de aire en un flujo de agua que se mueve junto con el flujo, y no contra el flujo.

Dado que , donde  es la fuerza,  es la aceleración, un electrón con una masa efectiva negativa en la parte superior de la banda de valencia se moverá en la dirección opuesta, así como un electrón con una masa efectiva positiva en la parte inferior de la banda de conducción cuando expuestos a fuerzas eléctricas y magnéticas .

Con base en lo anterior, un hueco puede ser considerado como una cuasi-partícula que se comporta en campos eléctricos y magnéticos como una partícula real con carga y masa positivas. Esto se debe a que una partícula con carga y masa negativas se comporta en estos campos de la misma forma que una partícula con carga y masa positivas. Por lo tanto, en el caso considerado, los agujeros pueden considerarse cuasipartículas ordinarias con carga positiva, lo que se observa, por ejemplo, en la determinación experimental del signo de carga de los portadores de carga en el efecto Hall.

El concepto de agujeros en la química cuántica

El término "agujero" también se usa en química computacional , donde el estado fundamental de una molécula se interpreta como un estado de vacío; convencionalmente se supone que no hay electrones en este estado. En tal modelo, la ausencia de un electrón en un estado permitido se denomina "agujero" y se considera como una determinada partícula. Y la presencia de un electrón en un espacio normalmente vacío se llama simplemente "electrón". Esta terminología es casi idéntica a la utilizada en la física del estado sólido.

Comentarios

  1. Psicológicamente, es más fácil para las personas operar con el concepto de cuasipartícula que acostumbrarse a la frase masa negativa , incluso si lo único que conecta la masa como una cantidad física que determina las propiedades inerciales y gravitatorias de los cuerpos, con un La cantidad física llamada masa efectiva de un electrón en un cristal , es la dimensión y el uso de palabras masa en el nombre del término.

Notas

  1. GOST 22622-77. Materiales semiconductores. Términos y definiciones de los principales parámetros electrofísicos. Archivado el 7 de noviembre de 2019 en Wayback Machine .
  2. Weller, Paul F. Una analogía para conceptos elementales de teoría de bandas en sólidos  //  J. Chem. Educación: diario. - 1967. - vol. 44 , núm. 7 . — Pág. 391 . doi : 10.1021 / ed044p391 .
  3. Kitel . Introducción a la Física del Estado Sólido, 8ª edición, pp. 194-196.

Véase también

Enlaces