El misil aire-aire guiado (UR "V-V", también - UR VV, RVV) es un misil guiado de aviación diseñado para destruir aviones . En la literatura inglesa, se le conoce como AAM (abreviatura de misil aire-aire en inglés ). Los primeros misiles guiados de esta clase aparecieron a finales de la Segunda Guerra Mundial en Gran Bretaña, Alemania y Estados Unidos, aunque ya en la década de 1930 se desarrollaron proyectos de este tipo de armas. La primera victoria en combate aéreo con la ayuda de un misil guiado aire-aire se obtuvo el 24 de septiembre de 1958 [1] [aprox. 1] . Los misiles aire-aire se clasifican por alcance y tipo de cabeza de referencia .
El primer diseño detallado de un misil aire-aire se creó en el Reino Unido en 1943. El Artemis tenía una guía de radar semiactiva con un buscador giratorio de exploración de cono inusual. Por razones económicas, y ante la evidente degradación de las capacidades ofensivas de la Luftwaffe en la segunda mitad de la guerra, el proyecto no se llevó a cabo [2] .
Durante la Segunda Guerra Mundial [3] , se llevaron a cabo en Alemania experimentos intensivos para apuntar un misil de avión a un avión . Durante las incursiones masivas de los aliados, la Luftwaffe encontró una efectividad insuficiente para destruir bombarderos pesados con armas de aviación de cañón , como resultado de lo cual comenzaron a desarrollar otra " arma milagrosa " capaz de destruir un bombardero desde una distancia segura para un avión de combate. Al principio, los cohetes no guiados (NURS) R4M [4] se utilizaron en aviones de defensa aérea alemanes para atacar densas formaciones de bombarderos aliados . Además, los esfuerzos de los diseñadores alemanes llevaron a la creación de prototipos de misiles aire-aire especializados, como el Ruhrstahl X-4 [5] .
Estados Unidos también desarrolló misiles antiaéreos durante la Segunda Guerra Mundial, creando los misiles Hughes JB-3 Tiamat y Martin Gorgon como una forma de combatir los bombarderos a reacción alemanes. Ambos misiles se consideraron obsoletos poco después de la guerra y nunca se pusieron en servicio. Inmediatamente después de la guerra (en 1946), la Fuerza Aérea de EE. UU. comenzó a desarrollar un nuevo misil, el AAM-A-1 Firebird , pero aunque el misil se probó con éxito en 1947-1949, su rendimiento también se consideró insuficiente en el contexto de aviones a reacción que mejoran rápidamente.
Características comparativas de los proyectos de la Segunda Guerra Mundial para la URVV:
Parámetro | Ruhrstahl X-4 | artemisa | Hughes JB-3 Tiamat | Martín Gorgona IIA |
---|---|---|---|---|
País: | Alemania nazi | Gran Bretaña | EE.UU | EE.UU |
Peso en vacío: | 60 kg | 37 kg | 281 kg | 440 kg |
Rango: | 3200m | 2800m | 10-15 kilómetros | 16-20 kilómetros |
Guía: | manual de comando de radio,
seguimiento visual de misiles |
Automático, semiactivo
Radar |
automático,
"viga de silla de montar" |
manual de comando de radio,
televisión, a través de una cámara en un cohete |
Estado al 09/05/1945: | En producción | Dibujos de trabajo | Examen de preparación | Pruebas |
La investigación de la posguerra condujo al desarrollo del misil aire-aire Fairey Fireflash , adoptado por la RAF en 1955 . Sin embargo, su uso resultó ser ineficaz [6] . La Fuerza Aérea y la Marina de los EE. UU. adoptaron misiles aire-aire en 1956. El primer misil de la Fuerza Aérea de EE. UU. fue el AIM-4 Falcon ; La Marina de los EE. UU. recibió dos misiles a la vez: AIM-7 Sparrow [7] y AIM-9 Sidewinder , cuyas modificaciones todavía están en servicio [8] . El primer misil aire-aire RS-1U (K-5/R-5) de la Fuerza Aérea de la URSS se puso en servicio en 1956 [9] .
El 24 de septiembre de 1958, un caza F-86 de la Fuerza Aérea de Taiwán atacó un MiG-15 de la Fuerza Aérea China con un misil AIM-9B Sidewinder y lo derribó. Esta victoria se considera la primera, ganada con la ayuda de un misil aire-aire [1] . A mediados de la década de 1950, prevalecía la opinión de que la futura batalla aérea se reduciría solo al intercambio de ataques con misiles entre los aviones de las partes en conflicto a distancias que excedían la visibilidad del objetivo, por lo tanto, los cazas creados a principios de la década de 1960 (como como F-4 ) se pusieron en servicio únicamente misiles. Sin embargo, el uso exitoso de cazas obsoletos armados con cañones contra los últimos aviones durante la guerra de Vietnam obligó a reconsiderar los puntos de vista sobre el combate aéreo y el regreso del cañón al armamento de los cazas [10] . Pero el misil aire-aire siguió siendo el arma principal del combate aéreo [11] .
Los primeros misiles con sistemas de localización por infrarrojos solo podían apuntar a un objetivo para el seguimiento automático en el hemisferio trasero, donde la radiación térmica de los motores era más intensa [12] [13] . Pero ya en la Guerra de las Malvinas , los Harriers británicos subsónicos , utilizando misiles AIM-9L todo aspecto con buscador de infrarrojos AIM-9L, recibidos de los Estados Unidos antes del comienzo del conflicto, obtuvieron una serie de victorias sobre los supersónicos Mirage III y Dagger. cazas de la Fuerza Aérea Argentina [14] . Los misiles aire-aire modernos son de todos los aspectos, independientemente del buscador utilizado.
Por alcance, los misiles aire-aire se dividen en [15] :
(En la literatura inglesa, los misiles de corto alcance también se denominan dogfight (AAM) o dentro del alcance visual (WVRAAM) , los misiles de mediano y largo alcance se denominan más allá del alcance visual, BVRAAM ).
El alcance de un misil generalmente se da como el alcance del misil en condiciones ideales, lo que es algo engañoso. El alcance efectivo de un misil depende de muchos factores: las altitudes de lanzamiento y del objetivo, la velocidad del avión de transporte y el objetivo, el ángulo de lanzamiento y la ubicación relativa del objetivo y el avión de transporte. Por ejemplo, el misil ruso R-77 tiene un alcance de 100 km, pero este alcance solo se logra cuando se lanza a una gran altitud, un objetivo que no maniobra ubicado en el hemisferio delantero. Cuando se lanza a baja altura, el alcance efectivo del lanzamiento de un misil puede ser solo del 20 al 25% del máximo. Si el objetivo está maniobrando activamente, o si el misil se lanza hacia el hemisferio trasero de un objetivo saliente de alta velocidad, entonces el alcance efectivo del lanzamiento puede disminuir aún más. Esta dependencia es totalmente inherente a todos los misiles aire-aire [16] (en la literatura en idioma inglés, el rango de lanzamiento efectivo, es decir, el rango en el que el objetivo no puede evadir el misil que se le dispara, se designa como no -zona de escape ).
Los pilotos insuficientemente entrenados, por regla general, lanzan misiles al alcance máximo, naturalmente, con malos resultados. Durante la guerra entre Etiopía y Eritrea , los pilotos de ambos bandos dispararon masas de cohetes R-27 ( AA-10 Alamo ) desde larga distancia sin resultados. Sin embargo, cuando los pilotos de los cazas etíopes Su-27 (después de una sesión informativa adicional de especialistas de la antigua URSS) comenzaron a acercarse al enemigo y atacar aviones eritreos a corta distancia utilizando misiles R-73 ( AA-11 Archer ), a menudo destruyeron el objetivo [17] .
Como regla general, los misiles aire-aire tienen un cuerpo cilíndrico alargado para reducir el área de la sección transversal del misil, lo que reduce la fuerza de resistencia del aire cuando vuela a altas velocidades.
Delante del cohete hay un radar o un cabezal de referencia infrarrojo (GOS). Detrás está el equipo radioelectrónico a bordo (aviónica), que controla el movimiento del misil y su guía hacia el objetivo utilizando el método de navegación proporcional. Las señales de control de misiles son generadas por el piloto automático en función de la información sobre el movimiento del objetivo del buscador y la información de los sensores de movimiento a bordo (sensores de velocidad angular y aceleración, aceleración lineal). Por lo general, hay una ojiva detrás de la aviónica , que consta de una carga explosiva (BB) y uno o más fusibles de proximidad. Además, se monta un fusible de contacto en el cohete para destruir el cohete si cae al suelo. Las ojivas de los misiles son varillas y fragmentación altamente explosiva [18] . Los cohetes utilizan fusibles de proximidad de radar (activo y pasivo), láser e infrarrojos [19] .
En la parte trasera del misil aire-aire suele haber un motor de cohete de propulsor sólido de modo simple o dual . En algunos misiles de largo alcance, se han utilizado motores de cohetes de propulsante líquido multimodo y motores estatorreactores, que ahorran combustible para la fase final de vuelo altamente maniobrable. Algunos cohetes modernos para la fase final del vuelo tienen un segundo motor de cohete sólido [19] . Por ejemplo, el misil MBDA Meteor que se está desarrollando tiene un esquema bimotor para lograr un alto rango de vuelo: se usa un motor estatorreactor para acercarse al objetivo y se usa un motor de cohete en la etapa final. Los misiles aire-aire modernos utilizan motores de cohetes sin humo, ya que las colas de humo de los primeros misiles permitieron a la tripulación del avión atacado notar el lanzamiento del misil desde lejos y evadirlo.
En el cuerpo del cohete, dependiendo del diseño aerodinámico, se pueden ubicar alas. Los timones aerodinámicos (con accionamiento eléctrico o hidráulico) o de gas se utilizan como controles. Los timones aerodinámicos pueden ser timones propiamente dichos, alas oscilantes, alerones , rodillos o spoilers . Para aumentar la maniobrabilidad de los misiles, se pueden utilizar motores de vectorización de empuje . Las fuentes de energía de los cohetes pueden ser acumuladores eléctricos o hidráulicos, acumuladores de presión de gas o polvo .
Los misiles guiados toman el rumbo del radar o la radiación infrarroja (IR) del objetivo y se acercan antes de que se detone la ojiva. Por regla general, la ojiva es detonada por un fusible de proximidad a cierta distancia del objetivo. El objetivo es alcanzado por fragmentos del caparazón de la ojiva o por varillas que pueden atravesar el avión. Para casos de impacto directo, el cohete tiene una espoleta de contacto [20] .
Aunque el misil utiliza un radar aerotransportado o un sensor de infrarrojos para localizar el objetivo, normalmente se utiliza equipo de aviones de combate para detectar el objetivo, y la orientación se puede obtener de varias maneras. Los misiles con buscador de infrarrojos pueden recibir la designación de objetivo (dirección hacia el objetivo) del radar aerotransportado del caza, y los misiles con buscador de radar pueden lanzarse a objetivos detectados visualmente o utilizando sistemas optoelectrónicos de designación de objetivos. Sin embargo, deberán iluminar el objetivo del radar aerotransportado durante toda la intercepción o la etapa inicial, según el tipo de buscador de radar.
Los primeros misiles aire-aire estaban equipados con un sistema de guía de comando por radio. El piloto debía controlar el cohete lanzado mediante un joystick instalado en la cabina. Los pulsos de control se transmitieron al cohete primero por cable y luego por radio. Por lo general , se instalaba un trazador en la sección de cola de un misil con dicho sistema de guía . Los cohetes con control manual tenían una probabilidad extremadamente baja de dar en el blanco [21] .
Más tarde se automatizó el sistema. Ahora el caza formó un estrecho haz de radio dirigido estrictamente al objetivo. El misil fue lanzado hacia el haz, donde el piloto automático lo mantuvo en función de las señales de los sensores ubicados en la parte trasera del misil. Mientras el caza mantuviera el rayo sobre el objetivo, el misil se movería hacia él. El sistema técnico relativamente simple resultó ser muy difícil de operar, ya que era muy difícil para el piloto mantener el haz en el objetivo, al mismo tiempo que piloteaba la aeronave y observaba el espacio aéreo, para no convertirse él mismo en objeto de un ataque. . Además, el caza no tenía que depender de un vuelo recto y uniforme del objetivo durante la orientación.
El sistema de guía por comando de radio está equipado con:
El sistema de guía por radar generalmente se usa en misiles de mediano y largo alcance, ya que a tales distancias la radiación infrarroja del objetivo es demasiado pequeña para un seguimiento confiable del buscador infrarrojo. Hay dos tipos de buscadores de radar: activos y semiactivos.
Las técnicas para evadir misiles con buscadores de radar incluyen maniobras activas, disparos de paja y bloqueo por sistemas EW .
Radar activo (ARLS)Un misil con un buscador de radar activo para el seguimiento de objetivos tiene su propio radar con un emisor y un receptor [24] . Sin embargo, el alcance del radar de un misil depende del tamaño de la antena, que está limitada por el diámetro del cuerpo del misil, por lo que los misiles con buscador ARS utilizan métodos adicionales para acercarse al objetivo dentro del alcance del radar aerotransportado. Estos incluyen el método de guía corregido por inercia y el radar semiactivo.
Buscador de radar activo equipado con:
Los misiles con un buscador de radar semiactivo no tienen su propio emisor. PRLS GOS recibe la señal de radar del avión portador de misiles reflejada desde el objetivo. Así, para apuntar un misil con un buscador de radar, un avión atacante debe irradiar el objetivo hasta el final de la intercepción, lo que limita su maniobra. Los misiles con buscador PRLS son más sensibles a las interferencias que los misiles con radar activo, ya que la señal del radar con guía semiactiva debe recorrer una distancia mayor.
Buscador de radar semiactivo equipado con:
El cabezal de referencia infrarrojo apunta al calor emitido por el objetivo. Las primeras versiones del buscador IR tenían baja sensibilidad, por lo que solo podían apuntar a la boquilla de un motor en marcha. Para usar tal misil, el avión atacante tenía que estar en el hemisferio trasero del objetivo cuando fue lanzado [36] . Esto limitó la maniobra del avión de transporte y el alcance del misil. La baja sensibilidad del GOS también limitó la distancia de lanzamiento, ya que la radiación térmica del objetivo disminuyó considerablemente al aumentar la distancia.
Los misiles modernos con buscador IR son todo aspecto, ya que la sensibilidad del sensor infrarrojo le permite capturar el calor que se produce durante la fricción del revestimiento del avión contra el flujo de aire. Junto con la mayor maniobrabilidad de los misiles de corto alcance, esto permite que la aeronave alcance un objetivo aéreo desde cualquier posición, y no solo desde el hemisferio posterior (sin embargo, la probabilidad de alcanzar un objetivo con un misil disparado hacia el hemisferio posterior es mayor ).
El principal medio para contrarrestar los misiles con buscador IR son las trampas de calor disparadas, cuya radiación térmica es más fuerte que la radiación del objetivo, por lo que los misiles pierden su objetivo y apuntan a una fuente de radiación más brillante. También han encontrado aplicación varios bloqueadores de infrarrojos y elementos estructurales que reducen la radiación térmica de los motores. En la mayoría de los helicópteros militares, se instalan "dispersores" especiales de radiación térmica en las boquillas de salida de los motores, que mezclan el flujo de aire con la salida del motor, reduciendo así su temperatura. Para protegerse contra misiles con buscador IR, se están desarrollando varios sistemas láser que pueden derribar el sistema de guía de misiles con un rayo.
Sin embargo, los misiles más avanzados con buscador IR, por ejemplo, ASRAAM , tienen una matriz infrarroja que forma una imagen infrarroja del objetivo (como en una cámara termográfica ), lo que permite que el misil distinga la aeronave de fuentes puntuales de radiación de calor. trampas [37] [38] [39] . Además, los buscadores IR modernos tienen un amplio campo de visión, por lo que el piloto ya no tiene que dirigir su avión estrictamente al objetivo para lanzar el misil. Es suficiente que un piloto de combate mire el objetivo para usar el sistema de designación de objetivos montado en el casco para atacarlo con misiles con buscador IR. En los cazas rusos MiG-29 y Su-27 , además del radar, se utiliza un sistema de designación de objetivos óptico-electrónico, que le permite determinar el alcance del objetivo y dirigir misiles sin desenmascararse con el radar incluido.
Para aumentar la maniobrabilidad, los misiles modernos de corto alcance están equipados con motores de empuje vectorial y timones de gas, que permiten que el misil gire hacia el objetivo inmediatamente después del lanzamiento, antes de que adquiera la velocidad suficiente para controlar efectivamente las superficies aerodinámicas.
El buscador infrarrojo está equipado con:
El último sistema de guía optoelectrónico apareció. Un misil con un buscador OE tiene una matriz óptico-electrónica que opera en el rango visible. El sistema de guía de un misil de este tipo se puede programar para golpear los elementos más vulnerables de la aeronave, como la cabina. El buscador OE no depende de la radiación térmica del objetivo, por lo tanto, puede usarse en objetivos que apenas se notan en el rango IR.
El buscador óptico-electrónico está equipado con:
Para una evaluación comparativa de la eficacia de los misiles aire-aire, se utilizan varias de las siguientes características.
Rango de lanzamiento efectivo contra un objetivo que no maniobra Alcance de lanzamiento contra un objetivo que desconoce el ataque y no realiza maniobras evasivas, con alta probabilidad de acertar. Llamado Launch Success Zone en la literatura en idioma inglés . Rango máximo de inclinación La distancia directa máxima entre el avión de transporte y el objetivo: cuanto mayor es para un misil dado, más probable es que alcance el objetivo. Llamado F-Pole en la literatura en idioma inglés . Rango de lanzamiento efectivo Rango de lanzamiento en el que se logra una alta probabilidad de alcanzar un objetivo que evade activamente. El rango de alcance efectivo generalmente se reduce, según el tipo de misil. La longitud del cono depende de la velocidad y el alcance del misil, así como de la sensibilidad del buscador. El diámetro de un cono imaginario está determinado por la maniobrabilidad del cohete y las velocidades angulares del buscador. En la literatura inglesa, el rango de lanzamientos efectivos se llama No-Escape Zone . Precisión de referencia La probabilidad de golpear un círculo de un radio dado. Los misiles con un buscador de radar tienen una probabilidad de 0,8 a 0,9 de impactar en un círculo con un radio de 10 m. Los misiles con un buscador de infrarrojos son más precisos y, con la misma probabilidad, caen en un círculo con un radio de 3 a 5 m. Los errores de búsqueda de misiles son aleatorios y dinámicos. Los primeros están asociados al ruido de la señal (ruido de equipos electrónicos, interferencias, fluctuaciones angulares de la señal), los segundos surgen por maniobras del blanco antimisiles y fallas en los equipos de guiado.Los misiles aire-aire de corto alcance se clasifican en generaciones según las tecnologías utilizadas para crearlos.
Primera generación Los primeros misiles de corto alcance, como las primeras versiones del AIM-9 y K-13 ( AA-2 Atol ), tenían un buscador infrarrojo fijo con un estrecho campo de visión de 30° y requerían una posición exactamente detrás del objetivo cuando lanzado. Fue suficiente que el avión atacado hiciera una maniobra menor para salir del campo de visión del buscador de misiles, como resultado de lo cual el misil perdió su objetivo.Misiles aire-aire | |||||||||
País | Nombre | tipo de GOS | Longitud, mm | Diámetro, mm | Envergadura, mm | Masa del cohete, kg | Peso de la ojiva , kg |
Alcance de lanzamiento , km |
Velocidad _ |
---|---|---|---|---|---|---|---|---|---|
Piraña MAA-1 | infrarrojos | 2820 | 152 | 650 | 90 | 12 | 5 (operativo) | ||
destello de fuego | RK | 2830 | 140 | 740 | 150 | 3.1 (operativo) | 2 | ||
racha de fuego | infrarrojos | 3190 | 223 | 750 | 136 | 22.7 | 6.4 (operativo) | 3 | |
Blusa roja | infrarrojos | 3320 | 230 | 910 | 154 | 31 | 12 (operativo) | 3.2 | |
Rayo del cielo [aprox. 2] | SLPR | 3680 | 203 | 1020 | 193 | 39.5 | 45 (operativo) | cuatro | |
AIM-132 ASRAAM | infrarrojos | 2900 | 166 | 450 | 88 | diez | 18 (operativo) | 3.5 | |
IRIS-T | infrarrojos | 2936 | 127 | 447 | 87.4 | 11.4 | ~25 (operativo) | 3 | |
MICA MBDA | IK, ARL | 3100 | 160 | 560 | 112 | 12 | 50 (operativo) | cuatro | |
Meteorito MBDA | ARL | 3650 | 178 | 185 | >>100 (operativo) | 4+ | |||
Shafrir | infrarrojos | 2500 | 140 | 550 | sesenta y cinco | once | 5 (operativo) | 2.5 | |
Shafrir 2 | infrarrojos | 2500 | 150 | 550 | 93 | once | 5 (operativo) | 2.5 | |
Python 3 [aprox. 3] | infrarrojos | 2950 | 150 | 800 | 120 | once | 15 (operativo) | 3.5 | |
Pitón 4 | infrarrojos | 2950 | 150 | 500 | 120 | once | 15 (operativo) | 3.5 | |
Pitón 5 | Equipo original | 3096 | 160 | 640 | 103.6 | once | 20+ (operativo) | cuatro | |
Derby (Alto) [46] | ARL | 3620 | 160 | 640 | 118 | 23 | ~50 (operativo) | cuatro | |
Astra | ARL | 3570 | 178 | 254 | 154 | quince | 100 (máximo) | 4+ | |
PL-5 | infrarrojos | 2893 | 657 | 83 | 60 | 100 (máximo) | 2.2 | ||
PL-7 | infrarrojos | 2740 | 165 | 660 | 89 | 12.5 | 7 (máximo) | 2.5 | |
PL-9 | infrarrojos | 2900 | 157 | 115 | 11.8 | 22 (máximo) | 3+ | ||
PL-10 | SLPR | 3690 | 203 | 1000 | 220 | 33 | 60 (máximo) | cuatro | |
PL-11 | SLPR | 3690 | 210 | 1000 | 230 | 33 | 50 [aprox. 4] (máximo) | cuatro | |
PL-12 | ARL | 3850 | 203 | 674 | 180 | 80+ (máximo) | cuatro | ||
TY-90 [aprox. 5] | infrarrojos | mil novecientos | 90 | No | veinte | 3 | 6 (máximo) | 2+ | |
H-2 [aprox. 6] | infrarrojos | ||||||||
H-4 | ARL | ||||||||
/ |
K-5 / RS-2U [aprox. 7] Álcali AA-1 |
RK | 2838 | 178 | 650 | 82 | 13 | 6 (máximo) | 1.5 |
/ |
R-8 / K-8 AA-3 Anab |
IR, SLPR | 4000 | 275 | 1300 | 227 | 40 | 23 (máximo) | 2 |
/ |
K-13 / R-3 / R-13 [aprox. 8] Atolón AA-2 |
IR, SLPR | 2830 | 127 | 530 | 75 | once | 15 (máximo) | 2.5 |
/ |
K-80 / R-4 AA-5 Ceniza |
IR, SLPR | 5200 | 315 | 1300 | 480 | cincuenta | 30 (máximo) | 2 |
/ |
R-40 AA-6 Acre |
IR, SLPR | 5900 | 300 | 1250 | 800 | 70 | 80 (máximo) | 2.3 |
/ |
R-23 AA-7 ápice |
IR, SLPR | 4180 | 200 | 1050 | 217 | 25 | 35 (máximo) | 3.5 |
/ |
R-24 AA-7 ápice |
IR, SLPR | 4800 | 230 | 1000 | 248 | 35 | 50 (máximo) | 3.5 |
/ |
R-27 AA-10 Álamo |
RI, SLPR, ARLS | 4080 | 230 | 770 | 253 | 39 | 130 (máximo) | 4.5 |
/ |
R-33 AA-9 Amós |
IU+PRLS | 4150 | 380 | 900 | 490 | 47 | 228 (máximo) | 3.5 |
/ |
R-60 AA-8 Pulgón |
infrarrojos | 2100 | 120 | 390 | 43.5 | 3 | 10 (máximo) | 2.7 |
/ |
R-73 AA-11 Arquero |
infrarrojos | 2900 | 170 | 510 | 105 | ocho | 30 (máximo) | 2.5 |
Sumador R-77 AA-12 |
IU+ARLS | 3600 | 200 | 350 | 175 | treinta | 82 - 175 (máximo) | cuatro | |
R-37 AA-X-13 Flecha |
IU+ARLS | 4200 | 380 | 700 | 600 | 60 | 300 (máximo) | 6 | |
KS-172 / R-172 AAM-L |
IU+ARLS | 7400 | 510 | 750 | 750 | cincuenta | 400 (máximo) | cuatro | |
AIM-4 Halcón | SLP, IR | 1980 | 163 | 508 | 3.4 | 9.7 (operativo) | 3 | ||
Gorrión AIM-7 | SLPR | 3660 | 203 | 813 | 225 | 40 | 32 - 50 (operativo) | cuatro | |
Sidewinder AIM-9 | infrarrojos | 2850 | 127 | 630 | 91 | 9.4 | 18 (operativo) | 2.5 | |
AIM-54Fénix | PRLS+ARLS | 3900 | 380 | 900 | 472 | 60 | 184 (operativo) | 5 | |
AIM-120AMRAAM | IU+ARLS | 3660 | 178 | 526 | 152 | 18 - 23 | 50 - 105 (operativo) [47] | cuatro | |
Tianjian-1 (Espada Celestial I, TC-1) |
infrarrojos | 2870 | 127 | 640 | 90 | 5 | |||
Tianjian-2 (Espada del cielo II, TC-2) |
IU+ARLS | 3600 | 203 | 750 | 190 | treinta | 60 | ||
R550 Magia | infrarrojos | 2720 | 157 | 89 | 13 | 15 (operativo) | 3 | ||
Mágico Súper 530 | SLPR | 3810 | 260 | 880 | 275 | 31 | 37 (operativo) | 4.5 | |
A-dardo | infrarrojos | 2980 | 166 | 488 | 89 | 10 (operativo) | |||
R-dardo | SLPR | 3620 | 160 | 118 | 60+ (operativo) | ||||
AAM-3 (Tipo 90) | infrarrojos | 3100 | 127 | 91 | 13 (operativo) | ||||
AAM-4 (Tipo 99) | RK+ARLS | 3667 | 203 | 800 | 222 | 100 (operativo) | 4 - 5 | ||
AAM-5 (Tipo 04) | infrarrojos | 2860 | 126 | 650 | 83,9 | 35 (operativo) | 3 |
Shirokorad A. B. Enciclopedia de armas de misiles domésticos / Ed. edición A. E. Taras . — M .: AST , 2003. — 515 p. — ISBN 5-170-11177-0 .