Cópula ( del lat. cópula "conexión, gavilla") es una función de distribución multidimensional definida en un cubo unitario bidimensional , de modo que cada una de sus distribuciones marginales es uniforme en el intervalo .
El teorema de Sklar es el siguiente: para una función de distribución bidimensional arbitraria con funciones de distribución marginales unidimensionales y existe una cópula tal que
donde identificamos una distribución con su función de distribución. La cópula contiene toda la información sobre la naturaleza de la relación entre dos variables aleatorias que no se encuentra en distribuciones marginales, pero no contiene información sobre distribuciones marginales. Como resultado, la información sobre los marginales y la información sobre la dependencia entre ellos están separados por una cópula entre sí.
Algunas propiedades de la cópula son:
La cópula mínima es el límite inferior para todas las cópulas, solo que en el caso bidimensional corresponde a una correlación estrictamente negativa entre variables aleatorias:
La cópula máxima es el límite superior para todas las cópulas, corresponde a una correlación estrictamente positiva entre variables aleatorias:
Una forma simple particular de cópula:
donde se llama función generadora . Tales cópulas se llaman de Arquímedes . Cualquier función generadora que satisfaga las siguientes propiedades sirve como base para una cópula adecuada:
Una cópula producto , también llamada cópula independiente , es una cópula que no tiene dependencias entre variables, su función de densidad es siempre igual a uno.
Cópula de Clayton:
Porque en la cópula de Clayton, las variables aleatorias son estadísticamente independientes .
El enfoque de la función del generador se puede ampliar para crear cópulas multidimensionales simplemente agregando variables.
Al analizar datos con una distribución desconocida, es posible construir una "cópula empírica" por convolución de tal manera que las distribuciones marginales sean uniformes. Matemáticamente, esto se puede escribir como:
El número de pares tales quedonde x ( i ) representa el estadístico de i ésimo orden de x .
Las cópulas gaussianas son ampliamente utilizadas en el sector financiero. Para el caso n-dimensional, la cópula se puede representar como [1] [2] :
,dónde:
El modelado de dependencia de cópula se usa ampliamente en la evaluación de riesgos financieros y el análisis de seguros, por ejemplo, en la fijación de precios de obligaciones de deuda garantizada (CDO) [3] . Además, las cópulas también se han aplicado a otras tareas de seguros como una herramienta flexible.
Distribuciones de probabilidad | |
---|---|
Discreto | |
Absolutamente continuo |