Números irracionales ζ (3) - ρ - √ 2 - √ 3 - √ 5 - ln 2 - φ,Φ - ψ - α,δ - e - e π y π |
La constante de Apéry ( ing. Constante de Apéry , fr. Constante d'Apéry ) es un número real , denotado (a veces ), que es igual a la suma de los números enteros positivos recíprocos a los cubos y, por lo tanto, es un valor particular de Riemann . función zeta :
.El valor numérico de la constante se expresa como una fracción decimal no periódica infinita [1] [2] :
1.202 056 903 159 594 285 399 738 161 511 449 990 764 986 292 340 498 881 792 271 555 3…Nombrado en honor a Roger Apéry , quien demostró en 1978 que es un número irracional ( teorema de Apéry [3] [4] ). La prueba inicial era de naturaleza técnica compleja, luego se encontró una versión simple de la prueba utilizando los polinomios de Legendre . No se sabe si la constante de Apéry es un número trascendental .
Esta constante ha atraído durante mucho tiempo el interés de los matemáticos: en 1735, Leonhard Euler [5] [6] la calculó con una precisión de hasta 16 dígitos significativos (1,202056903159594).
En matemáticas, la constante de Apéry aparece en muchas aplicaciones. En particular, el recíproco de , da la probabilidad de que tres enteros positivos cualesquiera elegidos al azar sean coprimos , en el sentido de que para , la probabilidad de que tres enteros positivos menores que (y elegidos al azar) sean coprimos es simple, tiende a .
La constante de Apéry surge naturalmente en una serie de problemas de física, incluidas las correcciones de segundo orden (y superiores) del momento magnético anómalo de un electrón en la electrodinámica cuántica . Por ejemplo, el resultado del diagrama de Feynman de dos bucles , que se muestra en la figura, da (aquí, se supone una integración de 4 dimensiones sobre los momentos de bucles internos que contienen solo partículas virtuales sin masa , así como la normalización correspondiente, incluido el grado de cantidad de movimiento de la partícula exterior ). Otro ejemplo es el modelo bidimensional de Debye .
La constante de Apéry está relacionada con el valor particular de la función poligamma de segundo orden :
y aparece en la expansión de la serie de Taylor de la función gamma :
,donde las contribuciones que contienen la constante de Euler-Mascheroni se factorizan en la forma .
La constante de Apéry también está relacionada con valores del trilogaritmo (un caso especial del polilogaritmo ):
, .Algunas otras series cuyos términos son inversos a los cubos de los números naturales también se expresan en términos de la constante de Apéry:
, .Otros resultados bien conocidos son la suma de una serie que contiene números armónicos :
,y el doble de la cantidad:
.Para probar la irracionalidad , Roger Apéry [3] utilizó la representación:
,donde es el coeficiente binomial .
En 1773, Leonhard Euler [7] dio una representación en forma de serie [8] (que posteriormente fue redescubierta varias veces en otros trabajos):
,en la que los valores de la función zeta de Riemann de argumentos pares se pueden representar como , donde están los números de Bernoulli .
Ramanujan dio varias representaciones en serie, que son notables porque proporcionan varios dígitos significativos nuevos en cada iteración. Incluyen [9] :
Simon Pluff obtuvo filas de un tipo diferente [10]
así como representaciones similares para otras constantes .
También se han obtenido otras representaciones en serie, entre ellas:
Algunas de estas representaciones se han utilizado para calcular la constante de Apéry con muchos millones de dígitos significativos.
En 1998 se obtuvo una representación en forma de serie [11] que permite calcular un bit arbitrario de la constante de Apéry.
También hay una gran cantidad de representaciones integrales diferentes para la constante de Apéry, a partir de fórmulas triviales como
o
siguiendo desde las definiciones integrales más simples de la función zeta de Riemann [12] , hasta otras bastante complejas, como
( Johan Jensen [13] ), ( Frits Böckers [14] ), (Yaroslav Blagushin [15] ).La fracción continua de la constante de Apéry (secuencia A013631 en OEIS ) es la siguiente:
La primera fracción continua generalizada para la constante de Apéry, que tiene una regularidad, fue descubierta de forma independiente por Stieltjes y Ramanujan :
Se puede convertir a:
Aperi pudo acelerar la convergencia de la fracción continua para una constante:
[16] [17]El número de dígitos significativos conocidos de la constante de Apéry ha crecido significativamente en las últimas décadas, gracias tanto al aumento de la potencia informática como a la mejora de los algoritmos [18] .
la fecha | Número de dígitos significativos | Autores de cálculo |
---|---|---|
1735 | dieciséis | Leonard Euler [5] [6] |
1887 | 32 | Thomas Ioannes Zancos |
1996 | 520 000 | Greg J. Fee y Simon Plouffe |
1997 | 1,000,000 | Bruno Haible y Thomas Papanikolaou |
1997 mayo | 10 536 006 | patricio demichel |
febrero de 1998 | 14 000 074 | Sebastián Wedeniwski |
1998 marzo | 32 000 213 | Sebastián Wedeniwski |
1998 julio | 64 000 091 | Sebastián Wedeniwski |
1998 diciembre | 128 000 026 | Sebastián Wedeniwski [19] |
2001, septiembre | 200 001 000 | Shigeru Kondo y Xavier Gourdon |
febrero de 2002 | 600 001 000 | Shigeru Kondo y Xavier Gourdon |
febrero de 2003 | 1,000,000,000 | Patrick Demichel y Xavier Gourdon |
abril de 2006 | 10,000,000,000 | Shigeru Kondo y Steve Pagliarulo [20] |
enero de 2009 | 15 510 000 000 | Alexander J. Yee y Raymond Chan [21] |
marzo de 2009 | 31 026 000 000 | Alexander J. Yee y Raymond Chan [21] |
septiembre de 2010 | 100,000,001,000 | Alexander J Yee [22] |
Septiembre 2013 | 200 000 001 000 | Roberto J. Setty [22] |
agosto 2015 | 250,000,000,000 | Ron Watkins [22] |
diciembre 2015 | 400,000,000,000 | Dipanjan Nag [22] |
agosto 2017 | 500,000,000,000 | Ron Watkins [22] |
Mayo 2019 | 1,000,000,000,000 | Ian Cutress [22] |
julio 2020 | 1 200 000 000 000 | Seung Min Kim [23] |
Hay muchos estudios dedicados a otros valores de la función zeta de Riemann en puntos impares en . En particular, los trabajos de Vadim Zudilin y Tangay Rivoal muestran que un conjunto infinito de números es irracional [24] , y que al menos uno de los números , , o es irracional [25] .
Numeros irracionales | ||
---|---|---|
| ||