División justa

Una división justa  es la tarea de distribuir muchos recursos entre varias personas que reclaman partes de estos recursos, mientras que cada persona recibe la parte que le conviene en un grado u otro. La disposición central de una división justa es el requisito de que sea realizada por los propios participantes en el proceso.

El problema de la división justa se presenta en diversas situaciones, como la división de una herencia , por ejemplo . Es un área activa de investigación en matemáticas , economía (especialmente en teoría de la elección social ), teoría de juegos , temas controvertidos y muchos otros.

Un algoritmo típico de división justa es divide y elige . Demuestra que dos personas con gustos diferentes pueden compartir un pastel de tal manera que cada uno crea que se ha llevado el mejor trozo. El estudio de división justa puede verse como una extensión de este procedimiento a varias condiciones más complejas.

Hay muchos tipos diferentes de algoritmos y problemas de división justa, dependiendo de la naturaleza del dividendo, los criterios de equidad, la naturaleza de los participantes y sus preferencias, y otras propiedades requeridas del algoritmo de división.

Cosas para compartir

Formalmente, el problema de la división justa se define por un conjunto y un grupo de jugadores. La división  es la división de un conjunto en subconjuntos que no se superponen: , un subconjunto por jugador.

El conjunto puede ser de varios tipos:

Además, el conjunto a dividir podría ser:

Finalmente, generalmente es necesario hacer algunas suposiciones sobre la conveniencia de los objetos divisibles, a cuál de los grupos pertenecen:

Con base en estas diferencias, se han estudiado varios tipos generales de problemas de división justa:

También se suelen considerar combinaciones y casos especiales:

Definiciones de justicia

La mayor parte de lo que comúnmente se conoce como una división justa queda fuera de la teoría cuando se utiliza el arbitraje . Estas situaciones ocurren a menudo con teorías matemáticas que tienen los nombres de problemas de la vida real. Las decisiones en el Talmud sobre las acciones cuando la propiedad se declara en quiebra reflejan algunas ideas complejas sobre la justicia [1] y la mayoría de la gente considera que estas decisiones son justas. Sin embargo, son el resultado de las discusiones de los rabinos , y no una división según las estimaciones de los participantes en la disputa de la propiedad.

Según la teoría subjetiva del valor , no puede haber una medida objetiva del valor de cada objeto. La equidad objetiva es entonces imposible, ya que diferentes personas cobran precios diferentes por cada objeto. Los experimentos empíricos sobre cómo las personas definen el concepto de justicia [2] han llevado a resultados inconsistentes.

Así, la mayoría de las investigaciones contemporáneas sobre equidad se centran en el concepto de justicia subjetiva . Se supone que cada una de las personas tiene una función de utilidad subjetiva personal o función de significación , que asigna un valor numérico a cada subconjunto . A menudo se supone que las características están normalizadas, de modo que los valores para cada persona son 0 para el conjunto vacío ( para todos los i) y 1 para el conjunto de todos los elementos ( para todos los i) si los elementos son deseables, y −1 si los elementos son indeseables. Ejemplos:

Sobre la base de estas funciones subjetivas, existen criterios ampliamente utilizados para una división justa. Algunos de ellos entran en conflicto con otros, pero a menudo se pueden combinar. Los criterios descritos aquí solo se aplican cuando un jugador puede tener la misma cantidad:

Todos los criterios anteriores asumen que los participantes reciben partes iguales de . Si diferentes participantes tienen diferentes participaciones (por ejemplo, en el caso de una sociedad en la que cada socio aporta fondos diferentes), entonces el criterio de equidad debe ajustarse en consecuencia. Ver el artículo División proporcional de un pastel con diferentes proporciones .

Requisitos adicionales

Además de la equidad, a veces se desea que la división sea óptima en el sentido de Pareto , es decir, ninguna otra división puede ser mejor para alguien sin pérdida para otro. El término "eficiencia" proviene de la idea económica de un mercado eficiente . Una división en la que un jugador se lleva todo es óptima según esta definición, por lo que por sí misma no garantiza una división justa. Ver también los artículos " Corte eficiente de tortas " y " El precio de la justicia ".

En el mundo real, las personas a veces tienen ideas muy claras sobre cómo otros jugadores valoran las apuestas y pueden usarlas. El caso en el que tienen un conocimiento completo de cómo otros jugadores valoran las apuestas puede ser modelado por la teoría de juegos . El conocimiento parcial es muy difícil de modelar. Una parte importante del aspecto práctico de una división justa es el desarrollo y estudio de procedimientos que funcionan bien a pesar de tales conocimientos parciales o pequeños errores.

Un requisito adicional es que este procedimiento de división justa sea un mecanismo veraz , es decir, debe ser una estrategia dominante para que los participantes muestren sus puntajes válidos. Este requisito suele ser muy difícil de satisfacer en combinación con la equidad y la eficiencia de Pareto .

Una generalización del problema es permitir que cada parte interesada esté formada por varios jugadores que comparten el mismo conjunto de recursos pero que tienen diferentes preferencias [4] [5] .

Procedimientos

Los algoritmos o procedimientos [6] de una división justa enumeran las acciones de los jugadores en términos de datos visibles y sus estimaciones. El procedimiento correcto es aquel que garantiza una división justa para cualquier jugador que actúe racionalmente según su propio juicio. Mientras que la acción del jugador depende de sus juicios, el procedimiento describe la estrategia que sigue el jugador racional. El jugador puede actuar como si la pieza tuviera una puntuación diferente, pero debe ser consistente (predecible). Por ejemplo, si el procedimiento dice que el primer jugador corta el pastel en dos partes iguales y el segundo elige un trozo, entonces el primer jugador no puede quejarse de que el segundo jugador se quedó con la mayor parte.

Lo que hace el jugador:

Se supone que el objetivo de cada jugador es maximizar el valor mínimo que puede obtener. En otras palabras, llegar al maximin .

Los procedimientos se pueden dividir en discretos y continuos . Un procedimiento discreto podría, por ejemplo, involucrar solo un cortador de pastel a la vez. Las rutinas continuas involucran cosas como cuando un jugador mueve un cuchillo y el otro jugador dice "para". Otro tipo de procedimiento continuo implica que la persona asigne un valor a cada parte del pastel.

Para obtener una lista de los procedimientos de división justa, consulte Categoría:Protocolos de división justa .

Historia

Según Saul Garfunkel , el problema de cortar la torta fue uno de los problemas abiertos más importantes de las matemáticas del siglo XX [7] , y la variante más importante del problema fue finalmente resuelta por el procedimiento de Brahms-Taylor desarrollado por Stephen Brahms y Alan Taylor en 1995.

Se desconocen las fuentes del protocolo Delhi y Choose . Las actividades relacionadas, como el comercio y el trueque , se conocen desde hace mucho tiempo. Las negociaciones que involucran a más de dos participantes también son bastante comunes, siendo la Conferencia de Potsdam un ejemplo sobresaliente.

La teoría de una división justa se cuenta solo desde el final de la Segunda Guerra Mundial . Fue desarrollado por un grupo de matemáticos polacos ( Hugo Steinhaus , Bronisław Knaster y Stefan Banach ) que se reunían habitualmente en el Scottish Café de Lvov (entonces en Polonia ). La división proporcional para cualquier número de participantes con el nombre de "última disminución" se desarrolló en 1944. Steinhaus lo atribuyó a Banach y Knaster cuando presentó el problema públicamente por primera vez en una reunión de la Econometric Society en Washington en septiembre de 1947. En esta reunión también planteó el problema de encontrar el menor número de cortes necesarios para tal división.

Para conocer la historia del corte envidioso, consulte el artículo Corte de pastel envidioso .

Aplicaciones

Los desafíos de la división equitativa surgen en situaciones como la división de herencias, la terminación de sociedades, los procesos de divorcio , las asignaciones de frecuencias de radio , el control del tráfico aeroportuario y la operación de satélites de teledetección de la Tierra .

Justa división en la cultura popular

Véase también

Notas

  1. Aumann y Maschler 1985 , pág. 195–213.
  2. Yaari, Bar-Hillel, 1984 , pág. una.
  3. ↑ Un término de uso frecuente, pero algo confuso, ya que la envidia es precisamente el fenómeno dominante en esta división. A veces se usa una traducción literal del inglés "libre de envidia". La ausencia de envidia significa la ausencia de motivos de envidia, es decir, es necesario dividir los recursos de tal manera que nadie sospeche que recibió menos que otra persona.
  4. Manurangsi, Suksompong, 2017 , pág. 100–108.
  5. Suksompong, 2018 , pág. 40–47.
  6. A veces se usa el término protocolo .
  7. Garfunkel, 1988 .
  8. Steinhaus, 1950 .
  9. Gardner, 1978 .
  10. Stewart, 2006 .
  11. Dinosaur Comics - 13 de noviembre de 2008 - ¡Tiempos divertidos increíbles! . Consultado el 8 de octubre de 2019. Archivado desde el original el 28 de octubre de 2019.

Literatura

Enlaces