La función divisor es una función aritmética asociada a los divisores de un número entero . La función también se conoce como la función divisor . Se utiliza, en particular, en el estudio de la relación entre la función zeta de Riemann y la serie de Eisenstein para formas modulares . Estudiado por Ramanujan , quien derivó una serie de igualdades importantes en la aritmética modular y las identidades aritméticas .
Estrechamente relacionada con esta función está la función divisora sumatoria , que, como sugiere su nombre, es la suma de la función divisoria.
La función " suma de divisores positivos " σ x ( n ) para un número real o complejo x se define como la suma de las x -ésimas potencias de los divisores positivos de n . La función se puede expresar mediante la fórmula
donde significa " d divide a n ". La notación d ( n ), ν( n ) y τ( n ) (del alemán Teiler = divisor) también se usa para denotar σ 0 ( n ), o la función del número de divisores [1] [2] . Si x es 1, la función se denomina función sigma o suma de divisores [3] y, a menudo, se omite el índice, de modo que σ( n ) es equivalente a σ 1 ( n ) [4] .
La suma alícuota s(n) paranesla sumadesus propios divisoreses decir, todos los divisores excepto el propio .n) −n(1) y es igual a σ[5]n
Por ejemplo, σ 0 (12) es el número de divisores del número 12:
mientras que σ 1 (12) es la suma de todos los divisores:
y la suma alícuota s(12) de los divisores propios es:
norte | Divisores | 0 ( norte ) _ | σ 1 ( norte ) | s ( norte ) = σ 1 ( norte ) - norte | Comentarios |
---|---|---|---|---|---|
una | una | una | una | 0 | cuadrado: el valor σ 0 ( n ) es impar; grado 2: s( n ) = n − 1 (casi perfecto) |
2 | 1.2 | 2 | 3 | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
3 | 1.3 | 2 | cuatro | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
cuatro | 1,2,4 | 3 | 7 | 3 | cuadrado: σ 0 ( n ) impar; potencia 2: s ( n ) = n − 1 (casi perfecta) |
5 | 1.5 | 2 | 6 | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
6 | 1,2,3,6 | cuatro | 12 | 6 | primer número perfecto : s ( n ) = n |
7 | 1.7 | 2 | ocho | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
ocho | 1,2,4,8 | cuatro | quince | 7 | potencia 2: s ( n ) = n − 1 (casi perfecta) |
9 | 1,3,9 | 3 | 13 | cuatro | cuadrado: σ 0 ( n ) impar |
diez | 1,2,5,10 | cuatro | Dieciocho | ocho | |
once | 1.11 | 2 | 12 | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
12 | 1,2,3,4,6,12 | 6 | 28 | dieciséis | primer número redundante : s ( n ) > n |
13 | 1.13 | 2 | catorce | una | primo: σ 1 (n) = 1+n, entonces s(n) =1 |
catorce | 1,2,7,14 | cuatro | 24 | diez | |
quince | 1,3,5,15 | cuatro | 24 | 9 | |
dieciséis | 1,2,4,8,16 | 5 | 31 | quince | cuadrado: σ 0 ( n ) impar; potencia 2: s ( n ) = n − 1 (casi perfecta) |
Los casos , etc. vienen en las secuencias A001157 , A001158 , A001159 , A001160 , A013954 , A013955 ...
Para números enteros que no son cuadrados, cada divisor d de n tiene un par divisor n/d y, por lo tanto, siempre es par para tales números. Para cuadrados, un divisor, a saber , no tiene un par, por lo que siempre es impar para ellos.
Para un número primo p ,
porque, por definición, un número primo es divisible solo por uno y por sí mismo. Si p n # significa primorial entonces
Está
claro que para todos .
La función divisor es multiplicativa , pero no completamente multiplicativa .
si escribimos
,donde r = ω ( n ) es el número de divisores primos de n , p i es el i - ésimo divisor primo, y a i es la potencia máxima de p i que divide a n , entonces
,que es equivalente a:
Poniendo x = 0, obtenemos que d ( n ) es:
Por ejemplo, el número n \u003d 24 tiene dos divisores primos: p 1 \u003d 2 y p 2 \u003d 3. Dado que 24 es el producto de 2 3 × 3 1 , entonces 1 \u003d 3 y 2 \ u003d 1 .
Ahora podemos calcular :
Los ocho divisores de 24 son 1, 2, 4, 8, 3, 6, 12 y 24.
Tenga en cuenta también que s ( norte ) = σ ( norte ) − norte . Aquí s ( n ) denota la suma de los divisores propios del número n , es decir, los divisores excluyendo el propio número n . Esta función se utiliza para determinar la perfección de un número - para ellos s ( n ) = n . Si s ( n ) > n , n se llama excesivo , y si s ( n ) < n , n se llama insuficiente .
Si n es una potencia de dos, es decir , entonces s (n) = n - 1 , lo que hace que n sea casi perfecta .
Como ejemplo, para dos p y q simples (donde p < q ), sea
Después
y
donde φ ( n ) es la función de Euler .
Entonces las raíces p y q de la ecuación:
se puede expresar en términos de σ ( n ) y φ ( n ) :
Conociendo n y σ ( n ) o φ ( n ) (o conociendo p+q y σ ( n ) o φ ( n )) podemos encontrar fácilmente p y q .
En 1984, Roger Heath-Brown demostró que
ocurre infinitamente muchas veces.
Dos series de Dirichlet usando la función divisor:
y con la notación d ( n ) = σ 0 ( n ) obtenemos
y la segunda fila
Serie de Lambert usando la función divisor:
para cualquier complejo | q | ≤ 1 y un .
Esta suma también aparece en la serie de Fourier para la serie de Eisenstein y en las invariantes de las funciones elípticas de Weierstrass .
En términos de o-pequeño , la función divisor satisface la desigualdad (ver página 296 del libro del Apóstol [6] )
para todosSeverin Wiegert dio una estimación más precisa
Por otro lado, como el número de números primos es infinito ,
En términos de O grande , Dirichlet demostró que el orden medio de la función divisor satisface la siguiente desigualdad (ver el Teorema 3.3 del libro del Apóstol)
para todosdonde es la constante de Euler-Mascheroni .
La tarea para mejorar el límite en esta fórmula es el problema del divisor de Dirichlet
El comportamiento de la función sigma no es uniforme. La tasa de crecimiento asintótico de la función sigma se puede expresar mediante la fórmula:
donde lim sup es el límite superior de . Este resultado es el teorema de Grönwall publicado en 1913 [7] . Su prueba utiliza el tercer teorema de Mertens , que establece que
donde p es primo.
En 1915, Ramanujan demostró que bajo la hipótesis de Riemann, la desigualdad
(Desigualdad de Robin)se cumple para todos los n suficientemente grandes [8] . En 1984, Guy Robin demostró que la desigualdad es verdadera para todo n ≥ 5041 si y solo si la hipótesis de Riemann es verdadera [9] . Este es el teorema de Robin y la desigualdad se hizo ampliamente conocida después de la demostración del teorema. El mayor número conocido que viola la desigualdad es n = 5040. Si la Hipótesis de Riemann es verdadera, entonces no hay números mayores que este y que violen la desigualdad. Robin demostró que si la hipótesis es incorrecta, existen infinitos números n que violan la desigualdad, y se sabe que el menor de tales números n ≥ 5041 debe ser un número superredundante [10] . Se ha demostrado que la desigualdad se cumple para grandes números impares libres de cuadrados y que la hipótesis de Riemann es equivalente a la desigualdad para todos los números n divisibles por la quinta potencia de un número primo [11]
Jeffrey Lagarias demostró en 2002 que la Hipótesis de Riemann es equivalente al enunciado
para cualquier n natural , donde es el n-ésimo número armónico [12] .
Robin demostró que la desigualdad
se cumple para n ≥ 3 sin ninguna condición adicional.
Números por características de divisibilidad | ||
---|---|---|
Información general | ||
Formas de factorización | ||
Con divisores limitados |
| |
Números con muchos divisores | ||
Relacionado con secuencias alícuotas |
| |
Otro |
|