Los aminoácidos ( ácidos aminocarboxílicos; AMK ) son compuestos orgánicos , cuya molécula contiene simultáneamente grupos carboxilo y amina . Los elementos químicos básicos de los aminoácidos son el carbono (C), el hidrógeno (H), el oxígeno (O) y el nitrógeno (N), aunque también se encuentran otros elementos en el radical de ciertos aminoácidos. Se conocen alrededor de 500 aminoácidos naturales (aunque solo 20 se usan en el código genético). [1] Los aminoácidos pueden considerarse derivados de los ácidos carboxílicos en los que uno o más átomos de hidrógeno se reemplazan por grupos amino.
La mayoría de los aproximadamente 500 aminoácidos conocidos se han descubierto desde 1953, incluso durante la búsqueda de nuevos antibióticos en microorganismos, hongos, semillas, plantas, frutas y fluidos animales. Aproximadamente 240 de ellos se encuentran en la naturaleza en forma libre, y el resto solo como elementos intermedios del metabolismo [1] .
Los aminoácidos esenciales están en negrita .
Aminoácidos | Abreviatura | Año | Fuente | Primero resaltado [3] |
---|---|---|---|---|
Glicina | Gly, G | 1820 | Gelatina | A. Braconno |
leucina | Leu, L. | 1820 | Fibras musculares | A. Braconno |
tirosina | Tiro, Y | 1848 | Caseína | J. von Liebig |
Sereno | Ser, S | 1865 | Seda | E. Kramer |
Ácido glutamico | Pegamento | 1866 | proteinas vegetales | G. Ritthausen |
glutamina | gln, q | 1877 | Harina de trigo | E. Schulze [4] |
Ácido aspártico | Asp, D. | 1868 | Conglutin, leguminosas ( brotes de espárragos ) | G. Ritthausen |
asparagina | asn, n | 1806 | jugo de esparragos | L.-N. Vauquelin y P. J. Robiquet |
Fenilalanina | Fe, F | 1881 | Brotes de lupino | E. Schulze [4] , J. Barbieri |
alanina | Ala, A | 1888 | fibroína de seda | A. Strekker , T. Weil |
lisina | Lis, K. | 1889 | Caseína | E. Drexel |
Arginina | Argentina, R | 1895 | Sustancia de cuerno | s hedin |
histidina | Su, H | 1896 | Sturin, histonas | A. Kossel [5] , S. Gedin |
cisteína | Cis, C | 1899 | Sustancia de cuerno | K. Morner |
Valina | Vale, V | 1901 | Caseína | pescador |
prolina | Pro, P | 1901 | Caseína | pescador |
Hidroxiprolina | hip, HP | 1902 | Gelatina | pescador |
triptófano | Trp, W | 1902 | Caseína | F. Hopkins , D. Kohl |
isoleucina | Ile, yo | 1904 | Fibrina | F. Erlich |
metionina | Conocí a M. | 1922 | Caseína | D. Möller |
treonina | Tr, T | 1925 | Proteínas de avena | S. Shriver y otros |
Hidroxilisina | Hyl, hK | 1925 | Proteínas de pescado | S. Shriver y otros |
En términos de propiedades físicas, los aminoácidos difieren marcadamente de los ácidos y bases correspondientes . Todos ellos son sustancias cristalinas , se disuelven mejor en agua que en disolventes orgánicos , tienen puntos de fusión bastante elevados; muchos de ellos tienen un sabor dulce. Estas propiedades indican claramente la naturaleza salina de estos compuestos. Las características de las propiedades físicas y químicas de los aminoácidos se deben a su estructura: la presencia de dos grupos funcionales opuestos al mismo tiempo: ácido y básico .
Todos los aminoácidos son compuestos anfóteros , pueden exhibir tanto propiedades ácidas debido a la presencia de un grupo carboxilo en sus moléculas - C O O H , como propiedades básicas debido al grupo amino - N H 2 . Los aminoácidos interactúan con ácidos y álcalis :
N H 2 - C H 2 - C O O H + H Cl → H Cl • N H 2 - C H 2 - C O O H (Sal clorhidrato de glicina ) N H 2 - C H 2 - C O O H + Na O H → H 2 O + N H 2 - C H 2 - C O O Na ( sal sódica de glicina )Debido a esto, las soluciones de aminoácidos en agua tienen las propiedades de las soluciones tampón , es decir, se encuentran en estado de sales internas.
N H 2 - C H 2 C O O H N + H 3 - C H 2 C O O -Los aminoácidos normalmente pueden participar en todas las reacciones características de los ácidos carboxílicos y las aminas .
N H 2 - C H 2 - C O O H + C H 3 O H → H 2 O + N H 2 - C H 2 - C O O C H 3 (éster metílico de glicina)Una característica importante de los aminoácidos es su capacidad para policondensarse , lo que conduce a la formación de poliamidas , incluidos péptidos , proteínas , nailon y capron .
Reacción de formación de péptidos :
H O O C - C H 2 - N H - H + H O O C - C H 2 - N H 2 → H O O C - C H 2 - N H - C O - C H 2 - N H 2 + H2O _ _El punto isoeléctrico de un aminoácido es elpHen el que la proporción máxima de moléculas de aminoácidos tiene carga cero. A estepHaminoácido es el menos móvil en un campo eléctrico, y esta propiedad puede usarse para separar aminoácidos, así comoproteínasypéptidos.
Un zwitterión es una molécula de aminoácido en la que el grupo amino se representa como -NH 3 + y el grupo carboxi se representa como -COO- . Tal molécula tiene un momento dipolar significativo con carga neta cero. Es a partir de tales moléculas que se construyen los cristales de la mayoría de los aminoácidos.
Algunos aminoácidos tienen múltiples grupos amino y grupos carboxilo. Para estos aminoácidos, es difícil hablar de un zwitterión específico .
La mayoría de los aminoácidos se pueden obtener durante la hidrólisis de proteínas o como resultado de reacciones químicas:
C H 3 C O O H + Cl 2 + (catalizador) → C H 2 Cl C O O H + H Cl ; C H 2 Cl C O O H + 2 N H 3 → N H 2 - C H 2 C O O H + N H 4 ClTodos los α-aminoácidos que forman parte de los organismos vivos, excepto la glicina , contienen un átomo de carbono asimétrico (la treonina y la isoleucina contienen dos átomos asimétricos) y tienen actividad óptica. Casi todos los α-aminoácidos naturales tienen una configuración L, y solo ellos están incluidos en la composición de las proteínas sintetizadas en los ribosomas .
Los residuos de asparagina en proteínas estructurales metabólicamente inactivas experimentan una lenta racemización no enzimática espontánea: en las proteínas de la dentina y el esmalte dental, el L-aspartato se transforma en la forma D a una tasa de ~0,1 % por año [6] , que se puede utilizar para determinar la edad de los mamíferos. También se ha observado la racemización del aspartato en el envejecimiento del colágeno ; se supone que tal racemización es específica para el ácido aspártico y procede debido a la formación de un anillo de succinimida durante la acilación intramolecular del átomo de nitrógeno del enlace peptídico con el grupo carboxilo libre del ácido aspártico [7] .
Con el desarrollo del análisis de trazas de aminoácidos, los D-aminoácidos se encontraron primero en las paredes celulares de algunas bacterias ( 1966 ) y luego en los tejidos de organismos superiores [8] . Por lo tanto, D-aspartato y D-metionina son presumiblemente neurotransmisores en mamíferos [9] .
Algunos péptidos contienen D-aminoácidos resultantes de la modificación postraduccional . Por ejemplo, la D - metionina y la D- alanina son constituyentes de los heptapéptidos opioides en la piel de la filomedusa anfibia sudamericana ( dermorfina , dermencefalina y deltorfinas ). La presencia de D-aminoácidos determina la alta actividad biológica de estos péptidos como analgésicos .
De manera similar, se forman antibióticos peptídicos de origen bacteriano que actúan contra las bacterias grampositivas: nisina , subtilina y epidermina [10] .
Con mucha más frecuencia, los D-aminoácidos forman parte de péptidos y sus derivados, que se forman por síntesis no ribosómica en células fúngicas y bacterianas. Al parecer, en este caso, los L-aminoácidos, que son isomerizados por una de las subunidades del complejo enzimático que sintetiza el péptido , también sirven como material de partida para la síntesis .
En el proceso de biosíntesis de proteínas , se incluyen en la cadena polipeptídica 20 α-aminoácidos codificados por el código genético . Además de estos aminoácidos, llamados proteinogénicos o estándar , existen aminoácidos no estándar específicos en algunas proteínas que surgen de aminoácidos estándar en el proceso de modificaciones postraduccionales. Recientemente, la selenocisteína (Sec, U) y la pirrolisina (Pyl, O) [11] [12] incorporadas traduccionalmente se consideran a veces aminoácidos proteinogénicos . Estos son los llamados aminoácidos 21 y 22 [13] .
La pregunta de por qué exactamente estos 20 aminoácidos se convirtieron en "elegidos" sigue sin resolverse [14] . No está del todo claro por qué estos aminoácidos resultaron ser preferibles a otros similares. Por ejemplo, un metabolito intermedio clave en la vía biosintética de la treonina , la isoleucina y la metionina es el α-aminoácido homoserina. Obviamente, la homoserina es un metabolito muy antiguo , pero para la treonina , la isoleucina y la metionina , existen aminoacil-tRNA sintetasas , tRNA , pero no para la homoserina.
Las fórmulas estructurales de los 20 aminoácidos proteinogénicos generalmente se dan en forma de la llamada tabla de aminoácidos proteinogénicos :
Aminoácidos | 3 letras [15] | 1 letra [15] | aminoácidos | mnemotécnico
regla [16] |
Polaridad [17] | radical | Señor | Volkswagen _
(Å 3 ) |
Pi | escala de hidrofobicidad [18] | frecuencia en proteínas (%) [19] |
---|---|---|---|---|---|---|---|---|---|---|---|
Glicina | gly | GRAMO | GGU, GGC, GGA, GGG | Glicina _ | no polar | alifático | 75.067 | 48 | 6.06 | −0,4 | 7.03 |
alanina | ala | A | UGC, CCG, CCG, CCG | una lanina | no polar | alifático | 89.094 | 67 | 6.01 | 1.8 | 8.76 |
Valina | valle | V | GUU, GUC, GUU, GUG | Valina _ | no polar | alifático | 117.148 | 105 | 6.00 | 4.2 | 6.73 |
isoleucina | isla | yo | AUU, AUC, AUA | yo soleucino | no polar | alifático | 131.175 | 124 | 6.05 | 4.5 | 5.49 |
leucina | Leu | L | UUA, UUG, CUU, CUC, CUA, CUG | leucina _ | no polar | alifático | 131.175 | 124 | 6.01 | 3.8 | 9.68 |
prolina | Pro | PAGS | UCC, CCC, CCA, CCG | Prolina _ | no polar | heterocíclico | 115.132 | 90 | 6.30 | −1,6 | 5.02 |
Sereno | Ser | S | UCU, UCC, UCA, UCG, AGU, AGC | serina _ | Polar | oximonoaminocarboxílico | 105.093 | 73 | 5.68 | −0,8 | 7.14 |
treonina | Thr | T | UCA, ACC, ACA, ACG | Treonina _ | Polar | oximonoaminocarboxílico | 119.119 | 93 | 5.60 | −0,7 | 5.53 |
cisteína | Cis | C | UGU, UGC | cisteína _ | Polar | Azufre | 121.154 | 86 | 5.05 | 2.5 | 1.38 |
metionina | Reunió | METRO | AGO | Metionina _ | no polar | Azufre | 149.208 | 124 | 5.74 | 1.9 | 2.32 |
aspártico | áspid | D | GAU, GAC | ácido aspar dic | Polar
|
Cargado negativamente | 133.104 | 91 | 2.85 | −3,5 | 5.49 |
asparagina | como | norte | UAA, AAC | espárragos _ _ | Polar | amidas | 132.119 | 96 | 5.41 | −3,5 | 3.93 |
glutamina | Glú | mi | GAA, GAG | Pegamento Ácido Támico | Polar
|
Cargado negativamente | 147.131 | 109 | 3.15 | −3,5 | 6.32 |
glutamina | gln | q | CAA, CAG | Q -tamina | Polar | amidas | 146.146 | 114 | 5.65 | −3,5 | 3.9 |
lisina | Lys | k | AAA, AAG | antes de L | Polar | cargado positivamente | 146.189 | 135 | 9.60 | −3,9 | 5.19 |
Arginina | Argentina | R | UGE, CGC, CGA, CGG, AGA, AGG | una R ginina | Polar | cargado positivamente | 174.203 | 148 | 10.76 | −4,5 | 5.78 |
histidina | Su | H | CAU, CAC | Histidina _ | Polar
cargado afirmativamente |
heterocíclico | 155.156 | 118 | 7.60 | −3,2 | 2.26 |
Fenilalanina | fe | F | UUU, UUC | Fenilalanina _ | no polar | aromático | 165.192 | 135 | 5.49 | 2.8 | 3.87 |
tirosina | Tyr | Y | UAU, UAC | t y rosa | Polar | aromático | 181.191 | 141 | 5.64 | −1,3 | 2.91 |
triptófano | trp | W | UGG | t W o anillos | no polar | aromático,
heterocíclico |
204.228 | 163 | 5.89 | −0,9 | 6.73 |
Para el aminoácido lisina , existen aminoacil-tRNA sintetasas de ambas clases.
Por vías biosintéticasLas vías para la biosíntesis de aminoácidos proteinogénicos son diversas. El mismo aminoácido se puede formar de diferentes maneras. Además, caminos completamente diferentes pueden tener etapas muy similares. Sin embargo, los intentos de clasificar los aminoácidos según sus rutas biosintéticas tienen lugar y están justificados . Existe una noción de las siguientes familias biosintéticas de aminoácidos: aspartato , glutamato , serina , piruvato y pentosa . No siempre un aminoácido en particular puede asignarse sin ambigüedad a una familia en particular; se realizan correcciones para organismos específicos y teniendo en cuenta la vía predominante. Por familias, los aminoácidos se suelen distribuir de la siguiente manera:
La fenilalanina , la tirosina y el triptófano a veces se aíslan en la familia shikimata .
Según la capacidad del organismo para sintetizar a partir de precursoresLa clasificación de los aminoácidos en esenciales y no esenciales no está exenta de inconvenientes. Por ejemplo, la tirosina es un aminoácido no esencial solo si hay un suministro suficiente de fenilalanina. Para los pacientes con fenilcetonuria , la tirosina se convierte en un aminoácido esencial. La arginina se sintetiza en el cuerpo humano y se considera un aminoácido no esencial, pero debido a algunas características de su metabolismo, bajo ciertas condiciones fisiológicas del cuerpo, puede equipararse a uno esencial. La histidina también se sintetiza en el cuerpo humano, pero no siempre en cantidades suficientes, por lo que debe suministrarse con los alimentos.
Según la naturaleza del catabolismo en los animalesLa biodegradación de aminoácidos puede proceder de diferentes maneras.
Según la naturaleza de los productos del catabolismo en los animales, los aminoácidos proteinogénicos se dividen en tres grupos:
Aminoácidos:
Los aminoácidos "millerianos" son un nombre generalizado para los aminoácidos obtenidos en condiciones cercanas al experimento de Stanley L. Miller de 1953 . Se ha establecido la formación de muchos aminoácidos diferentes como racemato, que incluyen: glicina , alanina, valina , isoleucina , leucina , prolina , serina , treonina , aspartato , glutamato
En medicina, también se denominan aminoácidos a una serie de sustancias que pueden realizar algunas de las funciones biológicas de los aminoácidos:
Una característica importante de los aminoácidos es su capacidad para policondensarse , lo que conduce a la formación de poliamidas , incluidos péptidos , proteínas , nailon , nailon y enanto [20] .
Los aminoácidos forman parte de la nutrición deportiva y los piensos compuestos . Los aminoácidos se utilizan en la industria alimentaria como aditivos de sabor , por ejemplo, la sal de sodio del ácido glutámico [21] .
sitios temáticos | ||||
---|---|---|---|---|
diccionarios y enciclopedias | ||||
|
moléculas bioquímicas | Principales grupos de|
---|---|
Aminoácidos | |
---|---|
Estándar | |
no estándar | |
ver también |
Clases de compuestos orgánicos | |
---|---|
hidrocarburos | |
que contiene oxígeno | |
Nitrógeno | |
Azufre | |
que contienen fósforo | |
haloorgánico | |
organosilicio | |
organoelemento | |
Otras clases importantes |
perfusión y sustitución de plasma - código ATC: B05 | Soluciones de||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
| ||||||||
| ||||||||
| ||||||||
| ||||||||
|