"Estrella polar" | |
---|---|
UGM-27 "Polaris" | |
| |
Tipo de | Misil balístico submarino |
Estado | Retirado del servicio |
Desarrollador | bloqueo |
Años de desarrollo |
A-1: Desde 1956 A-2: Desde 1958 A-3: Desde 1960 |
Inicio de la prueba |
A-1: septiembre de 1958 A-2: 10 de noviembre de 1960 A-3: 7 de agosto de 1962 |
Adopción |
A-1: 15 de noviembre de 1960 A-2: 26 de junio de 1962 A-3: 28 de septiembre de 1964 |
Fabricante | Lockheed |
Años de producción | 1959-1968 |
Unidades producidas |
Total : 1153 uds. [1] Polaris A-1: 163 unidades [1] Polaris A-2: 346 unidades [1] Polaris A-3: 644 unidades [una] |
Años de operación |
A-1: 1960-1965 A-2: 1962-1974 A-3: 1964-1981 |
Grandes operadores |
EE . UU . Reino Unido |
modelo básico | UGM-27A Polaris A-1 |
Modificaciones |
UGM-27B Polaris A-2 UGM-27C Polaris A-3/A-3T Polaris B-3 |
Características técnicas principales | |
Alcance máximo: 1853 km Peso de lanzamiento: 326-350 kg Precisión ( KVO ) : 1800 m |
|
↓Todas las especificaciones | |
Archivos multimedia en Wikimedia Commons |
UGM - 27 Polaris _ _ _ _ _ _ _ _ _ _ _ _
Inicialmente, el Polaris SLBM se desplegó en el SSBN de la clase George Washington .
Las pruebas comenzaron en septiembre de 1958.
El primer lanzamiento del cohete Polaris A1 desde debajo del agua se realizó el 20 de julio de 1960 desde el submarino nuclear George Washington (SSBN-598), desde una profundidad de 20 m.
15 de noviembre de 1960 SLBM "Polaris A-1" fue adoptado por los Estados Unidos.
"Polaris-A1" estuvo en servicio durante cinco años, hasta mediados de la década de 1960, y luego fue reemplazado por misiles modificados con las mejores características básicas de rendimiento (alcance, precisión, peso de lanzamiento, potencia y tipo de equipo de combate), y desde el principios de la década de 1970 - en los misiles Poseidón .
En virtud del Pacto de Nassau de diciembre de 1962 , Estados Unidos se comprometió a suministrar al Reino Unido misiles nucleares Polaris a cambio de que Estados Unidos alquilara una base de submarinos nucleares en Holy Loch, cerca de Glasgow .
"Polaris" tenía dos etapas ubicadas secuencialmente , cada una de las cuales albergaba un motor de cohete de propulsor sólido individual . Los cuerpos de los escalones estaban hechos de acero inoxidable resistente al calor AMZ-256 vanadio con un límite elástico de 160–170 kg/mm² .
El motor cohete de propulsante sólido de la primera etapa fue equipado con combustible mixto a base de perclorato de amonio como oxidante y poliuretano combustible con aluminio , y aditivos que mejoran la estabilidad de la velocidad de combustión, formación y almacenamiento de la carga. El impulso específico del motor de primera etapa alcanzó los 250 kg s/kg.
El motor cohete de propulsante sólido de la segunda etapa , índice DDT-70, estaba equipado con un combustible mixto a base de perclorato de amonio como comburente y un combustible dibásico (nitrocelulosa/nitroglicerina) con adición de aluminio [2] . El empuje de este motor era de 4 toneladas. El rango de vuelo requerido fue proporcionado por la elección del momento de corte del empuje. Comenzando con el Polaris-A2, el motor cohete de propulsante sólido de la segunda etapa estaba hecho de fibra de vidrio a base de epoxi, lo que permitió reducir el peso de la etapa.
Los motores de la primera y segunda etapa tenían 4 dispositivos de tobera cada uno. La vectorización del empuje se realizaba mediante un actuador hidráulico que controlaba los deflectores anulares de cada tobera. Las pruebas de dicho sistema de control del vector de empuje mostraron que incluso si el cohete se desvía 40 grados del eje vertical, cuando arranca, el cohete puede compensar la inclinación y alcanzar la trayectoria deseada. Las toberas de los cohetes en estado de almacenamiento protegen los tapones ciegos que, cuando se arrancan los motores, se retiran automáticamente de las toberas por el exceso de presión de los gases en la cámara de combustión.
Durante el lanzamiento, los misiles se expulsaron inicialmente a la superficie del agua desde los silos de lanzamiento de submarinos nucleares con aire comprimido, luego, cuando cambiaron a misiles modificados, el sistema neumático se reemplazó con un sistema de ciclo combinado para expulsar el misil a la superficie. del agua durante el lanzamiento. Pasando a través de la columna de agua durante un lanzamiento submarino, el cohete llega a la superficie con una velocidad de 50 m/s . El motor de cohete de combustible sólido de la primera etapa se enciende cuando el cohete se eleva por inercia a una altura de 10 metros desde la superficie del agua. Aproximadamente a una altitud de 20 km , la primera etapa, que ha desarrollado una carga de combustible, se separa del cohete con la ayuda de pirobloqueos , después de lo cual se lanza el motor de cohete de combustible sólido de la segunda etapa y el cohete continúa acelerando. hasta que la segunda etapa se queda sin combustible (o corta el empuje).
El equipo de control a bordo, desarrollado conjuntamente por General Electric y Hughes , está ubicado en el compartimiento de instrumentos ubicado en la parte media del casco. El equipo de control incluye una plataforma giroestabilizada con acelerómetros, una máquina de control de vuelo de software con una computadora digital, un bloque de equipo eléctrico auxiliar, bloques electrónicos de servoamplificadores y servomotores, fuentes de alimentación eléctricas y neumáticas a bordo y otras unidades. Durante el vuelo, el cohete no pudo corregir la trayectoria, sino que siguió un rumbo determinado de antemano por el sistema de referencia de navegación. El equipo del sistema de control pesa alrededor de 90 kg.
En la ojiva Polaris-A2, por primera vez en SLBM, se utilizó un conjunto de herramientas de penetración de defensa antimisiles (KSP PRO), desarrollado por Lockheed desde 1961 bajo la designación PX-1 . El PCB de defensa antimisiles incluía 6 señuelos de luz y reflectores dipolo utilizados durante el vuelo de la ojiva fuera de la atmósfera y en la sección de transición de la rama descendente de la trayectoria a la sección atmosférica, así como generadores de interferencia activa que también trabajaron en la inicial parte de la sección atmosférica. Pruebas de vuelo como parte de un cohete, este complejo tuvo lugar en 1962, se completaron un total de 12 lanzamientos. Se entregaron 221 juegos PX-1 a la Marina de los EE. UU. en 1963-1964. Sin embargo, el PX-1 no se desplegó masivamente, solo una munición SLBM (16 misiles) estaba equipada con uno de los catorce SSBN que portaban el Polaris A-2.
Se lanza un misil en una posición sumergida después de que la presión del aire en el silo del misil se iguala con la presión del agua exterior al abrir válvulas especiales y llenar el silo con aire. A una profundidad de 25 metros, esta presión es de unos 2,5 kgf/cm². Después de igualar la presión, la cubierta sólida del silo de misiles se abre, pero el misil permanece en el silo sin llenarse de agua gracias a una segunda cubierta de plástico delgado instalada sobre el misil. Directamente al comienzo, se suministra aire comprimido a alta presión debajo del obturador del eje en el que está instalado el cohete. El obturador comienza a acelerar el cohete, que con su ojiva arroja (empuja) la cubierta de plástico y luego, por inercia, ingresa al espacio del agua y luego a la atmósfera, donde se enciende el motor de cohete de combustible sólido de la primera etapa. en una altura dada. El intervalo entre lanzamientos de cohetes en una salva es de 1 minuto [3]
UGM-27A "Polaris A-1" | UGM-27B "Polaris A-2" | UGM-27C "Polaris A-3" | estrella polar b-3 | |
---|---|---|---|---|
tipo de cohete | SLBM | |||
Tipos de medios | "George Washington" | "Ethan Allen" "Lafayette" (primeros 9) |
"Lafayette" "James Madison" "Benjamin Franklin" "George Washington" "Ethan Allen" "Resolución" |
|
Número de lanzadores | dieciséis | dieciséis | dieciséis | |
Características del cohete | ||||
Numero de pasos | 2 | |||
Masa del cohete, kg | 13000 | 14700 | 16200 | |
longitud | 8.53 | 9.45 | 9.86 | |
Diámetro, m | 1.37 | |||
Peso lanzado, kg | 500 | 500 | 760 | |
tipo de cabeza | termonuclear | |||
Vista de la cabeza | monobloque con ojiva W47-Y1 |
monobloque con ojiva W47-Y2 |
Tipo de dispersión MIRV con tres ojivas BB Mk 2RV ( W58) ) | |
Cantidad×Potencia de las ojivas, kt | 1×600 | 1×1200 | 3×200 | |
Sistema de control | revelador inercial autónomo - MIT , fabricantes - General Electric y Hughes | |||
KVO , m | 900 | 900 | 600 | |
Motor de primera etapa (desarrollador) |
Motor cohete de combustible sólido A1P ( Aerojet General ) |
RDTT A2P (Aerojet General) |
RDTT A3P (Aerojet General) |
RDTT |
Combustible: * Combustible * Oxidante |
Poliuretano + Perclorato de Aluminio y Amonio |
sin datos | ||
Material de la carcasa | Acero | Acero | método de bobinado de fibra de vidrio | |
Los órganos de gobierno | Deflectores | Deflectores | Boquillas giratorias | |
Presión en la cámara de combustión, kg/cm² | 70 | |||
Empuje del chorro , t | 45 | |||
Tiempo de funcionamiento del motor, s | 54 | |||
Temperatura en la cámara de combustión, s | 2700 °C | |||
Motor de segunda etapa (desarrollador) |
Motor cohete de combustible sólido (Aerojet General) |
RDTT DDT-70 ( Polvo de Hércules, APL , ABL ) |
RDTT X-260 (Polvo de Hércules) | |
Combustible: * Combustible * Oxidante |
Poliuretano + Copolímero de polibutadieno + Ácido acrílico Perclorato de amonio |
sin datos | ||
Material de la carcasa | Acero | Método de bobinado de fibra de vidrio epoxi | método de bobinado de fibra de vidrio | |
Los órganos de gobierno | Deflectores | Boquillas giratorias | Inyección de freón en la parte supercrítica de la boquilla | |
Presión en la cámara de combustión, kg/cm² | 35 | |||
Empuje del chorro , t | 9(4) | |||
Tiempo de funcionamiento del motor, s | 70 | |||
Tipo de inicio | seco, bajo el agua | |||
Parámetros de trayectoria | ||||
Velocidad máxima, m/s | ~3600 | |||
Altitud del apogeo de la trayectoria, km | 640 | 800 | ||
Autonomía máxima, km | 2200 | 2800 | 4600 | 3700 |
Autonomía mínima, km | ||||
Tiempo máximo de vuelo, s | ||||
Velocidad de encuentro objetivo, m/s | ||||
Historia | ||||
Desarrollador | bloqueo | |||
Comienzo del desarrollo | 1956 | 1958 | 1960 | |
Lanzamientos desde el stand | 11 de noviembre de 1960 | |||
Lanzamientos de submarinos | 23 de octubre de 1961 | |||
Adopción | 15 de noviembre de 1960 | 26 de junio de 1962 | 28 de septiembre de 1964 | no aceptada |
Fabricante |
La imposibilidad de crear un cohete de combustible sólido (el mejor cohete doméstico de combustible sólido PR-1 probado en Kapustin Yar en 1959, tenía un alcance de solo 60-70 km), obligó a crear otro cohete de combustible líquido .
El nuevo misil soviético R-13 fue inferior en todos los indicadores técnicos principales al SLBM estadounidense Polaris-A1 creado anteriormente.
Especialmente (3,7 veces) el R-13 fue inferior al Polaris en términos de rango de vuelo y 2,2 veces inferior en precisión de impacto (desviación probable circular). Sin embargo, cabe señalar que las ojivas de los SLBM Polaris-A1 / A2 de los tipos W47-Y1 y W47-Y2 tenían una gran cantidad de defectos y de 1000 ojivas fabricadas no se operaron más de 300, mientras que el resto fue sobre la eliminación de fallas detectadas, para 1966 el 75% de las ojivas W47-Y2 estaban inoperativas [6] .
A diferencia del Polaris, el R-13 solo podía lanzarse desde la superficie. El tiempo de preparación previo al lanzamiento para el P-13 fue más largo que para el Polaris.
El P-13 usó componentes propulsores de encendido automático, por lo tanto, para garantizar la seguridad contra incendios y reducir el riesgo de incendio, los misiles no se reabastecieron de combustible, sino que estaban en servicio de combate en las minas de submarinos, reabastecidos solo con un oxidante. El combustible para los misiles se colocó en el submarino en tanques separados fuera del casco fuerte del barco y se reabasteció de combustible en el cohete solo durante la preparación previa al lanzamiento, lo que inevitablemente aumentó el tiempo de preparación previa al lanzamiento del R-13 y redujo el útil volumen del barco.
El desarrollo del complejo D-6 con el primer SLBM de propulsor sólido doméstico se inició por Decreto del Consejo de Ministros de la URSS No. 1032-492 del 5 de septiembre de 1958 y se llevó a cabo bajo los mismos requisitos tácticos y técnicos que se aplicaron al complejo D-4 con el misil R-21. La ojiva es una ojiva nuclear monobloque con una capacidad de 0,3-1 Mt. D-6 fue diseñado, no probado. El combustible mixto “Nylon-C” a partir de perclorato de amonio, resina de furfural-acetona, tiocol marca “T” y nitroguanidina requirió el estudio, desarrollo y creación de plantas especializadas. Se diseñaron cinco variantes de SLBM con combustible Nylon-S, de las cuales la versión "C" tenía un alcance de hasta 1.100 km y una versión prometedora, hasta 2.500 km. [7]
características de presentación | estrella polar a1 | polaris a2 | R-11FM | R-13 | R-21 | M1 |
---|---|---|---|---|---|---|
País | EE.UU | URSS | Francia | |||
Año de adopción | 1960 | 1962 | 1959 | 1961 | 1963 | 1972 |
Autonomía máxima, km | 2200 | 2800 | 150 | 650 | 1420 | 3000 |
Peso lanzado, kg | 500 | 500 | 970 | 1600 | 1180 | 1360 |
tipo de cabeza | monobloque | |||||
potencia, monte | 0.6 | 0,8 (1,2) | 0.01-0.5 | una | 0.8-1 | 0.5 |
KVO , m | 1800 | ? | 8000 | 4000 | 2800 | ? |
Peso inicial, t | 12.7 | 13.6 | 5.5 | 13.745 | 19.65 | veinte |
longitud | 8.53 | 9.45 | 10.34 | 11.83 | 14.21 | 10.67 |
Diámetro, m | 1.37 | 0.88 | 1.3 | 1.4 | 1.49 | |
Numero de pasos | 2 | una | 2 | |||
tipo de motor | RDTT | LRE | RDTT | |||
Tipo de inicio | seco bajo el agua | superficie | mojado bajo el agua | seco bajo el agua |
Mencionado en la canción del mismo nombre de Megadeth (álbum " Rust in Peace ", 1990, letrista Dave Mustaine) como un sombrío símbolo apocalíptico de la locura de la carrera armamentista .
En la obra del escritor ruso de ciencia ficción Sergei Lukyanenko , " Visitas de otoño " está presente en las visiones de un experto en psi.
EE.UU. SLBM | |
---|---|
estrella polar | |
Poseidón | UGM73A Poseidón C3 |
Tridente |
Misiles estadounidenses con una ojiva nuclear | |
---|---|
ICBM y primeros IRBM | |
SLBM | |
CR | |
IRBM tardío y táctico | |
V-V, P-V y P-P | |
no incluido en la serie |
|
Armas de misiles estadounidenses | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"aire-aire" |
| ||||||||||||||||||||||||||||
"superficie a superficie" |
| ||||||||||||||||||||||||||||
"aire-superficie" |
| ||||||||||||||||||||||||||||
"superficie-aire" |
| ||||||||||||||||||||||||||||
Las cursivas indican muestras de producción prometedoras, experimentales o no en serie. A partir de 1986, se empezaron a utilizar letras en el índice para indicar el entorno/objetivo de lanzamiento. "A" para aviones, "B" para múltiples entornos de lanzamiento, "R" para barcos de superficie, "U" para submarinos, etc. |