Un mosaico regular tiene un tipo de cara regular. |
Un mosaico semirregular o uniforme tiene un tipo de vértice pero dos o más tipos de caras. |
Un k - mosaico homogéneo tiene k tipos de vértices y dos o más tipos de caras regulares. |
Los mosaicos que no están conectados de borde a borde pueden tener diferentes tamaños de cara regulares. |
El teselado del plano euclidiano con polígonos regulares convexos ha sido muy utilizado desde la antigüedad. La primera presentación sistemática la hizo Kepler en su libro Harmonices Mundi ( Armonía del Mundo , en latín , 1619).
Según Grünbaum y Shepard , se dice que un mosaico es regular si el grupo de simetría del mosaico actúa transitivamente sobre las banderas del mosaico, donde una bandera es un triple que consta de vértices , aristas y mosaicos mutuamente adyacentes. embaldosado. Esto significa que para cualquier par de banderas existe una operación de simetría que relaciona la primera bandera con la segunda. Esto es equivalente a un mosaico de polígonos regulares congruentes de borde a borde . Debe haber seis triángulos regulares , cuatro cuadrados o tres hexágonos regulares en cada vértice, de los cuales obtenemos tres mosaicos regulares .
p6m, *632 | p4m, *442 | |
---|---|---|
3 6 (t=1, e=1) |
6 3 (t=1, e=1) |
4 4 (t=1, e=1) |
La transitividad de vértices significa que para cualquier par de vértices existe una simetría (la traducción paralela también se incluye en las simetrías) que asigna el primer vértice al segundo [1] .
Si el requisito de transitividad de bandera se relaja a transitividad de vértice, pero se mantiene la condición de conexión de borde a borde, hay ocho mosaicos adicionales, que se conocen como arquimedianos , uniformes o semirregulares . Tenga en cuenta que hay dos mosaicos de espejo (enantiomórfico o quiral ) 3 4 .6 (hexagonal chato), y ambos se muestran en la siguiente tabla. Todos los demás mosaicos regulares y semirregulares son aquirales.
p6m, *632 | |||||
---|---|---|---|---|---|
3.12 2 (t=2, e=2) |
3.4.6.4 (t=3, e=2) |
4.6.12 (t=3, e=3) |
(3.6) 2 (t=2, e=1) | ||
p4m, *442 | p4,442 | mmm, 2*22 | p6,632 | ||
4,8 2 (t=2, e=2) |
3 2 .4.3.4 (t=2, e=2) |
3 3 .4 2 (t=2, e=3) |
Mosaico hexagonal chato (t=3, e=3) |
Grünbaum y Shepard llaman a estas teselas arquimedianas , como una indicación de la localidad de la propiedad de la disposición de las teselas alrededor de los vértices, para distinguirlas de las homogéneas , para las cuales la transitividad de los vértices es una propiedad global. Aunque todas las teselaciones tienen estas dos propiedades en el plano, existen teselaciones de Arquímedes en otros espacios que no son homogéneos.
Como isotoxal, triángulos amarillos, cuadrados rojos |
Como 4 isoédricos, 3 colores para triángulos |
Tales mosaicos periódicos se pueden clasificar por el número de órbitas de vértices, bordes y mosaicos. Si hay órbitas de vértice, el mosaico se considera -uniforme o -isogonal (equiangular). Si hay órbitas de mosaicos, se dice que el mosaico es isoédrico. Si hay órbitas de borde, se dice que el mosaico es -isotoxal (transitivo de borde).
Los mosaicos k -uniformes con las mismas figuras de vértices se pueden identificar aún más por su simetría de grupo de papel tapiz .
Los mosaicos 1-homogéneos incluyen 3 mosaicos regulares y 8 mosaicos semirregulares con 2 o más tipos de caras poligonales regulares. Hay 20 mosaicos de 2 uniformes, 61 mosaicos de 3 uniformes, 151 mosaicos de 4 uniformes, 332 mosaicos de 5 uniformes y 673 mosaicos de 6 uniformes. Todas las teselaciones se pueden agrupar por un número m de figuras diferentes, que se denominan m -teselas de Arquímedes [2]
metro | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | una | 2 | 3 | cuatro | 5 | 6 | 7 | ocho | 9 | Total | |
una | once | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | once | |
2 | 0 | veinte | 0 | 0 | 0 | 0 | 0 | 0 | 0 | veinte | |
3 | 0 | 22 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 61 | |
cuatro | 0 | 33 | 85 | 33 | 0 | 0 | 0 | 0 | 0 | 151 | |
5 | 0 | 74 | 149 | 94 | quince | 0 | 0 | 0 | 0 | 332 | |
6 | 0 | 100 | 284 | 187 | 92 | diez | 0 | 0 | 0 | 673 | |
7 | ? | ? | ? | ? | ? | ? | 7 | 0 | 0 | ? | |
ocho | ? | ? | ? | ? | ? | ? | veinte | 0 | 0 | ? | |
9 | ? | ? | ? | ? | ? | ? | ? | ocho | 0 | ? | |
diez | ? | ? | ? | ? | ? | ? | ? | 27 | 0 | ? | |
once | ? | ? | ? | ? | ? | ? | ? | ? | una | ? |
Para mosaicos euclidianos de borde a borde, los ángulos interiores de los polígonos deben sumar 360º. Un -gon regular tiene un ángulo interior . Hay diecisiete combinaciones de polígonos regulares cuyos ángulos interiores suman 360º, cada una de las cuales se llama vista de vértice. En cuatro casos, hay dos órdenes cíclicos diferentes de polígonos, dando veintiún tipos de vértices.
Sólo once de ellos pueden aparecer en el mosaico uniforme de polígonos regulares dado en las secciones anteriores.
En particular, si tres polígonos se encuentran en un vértice y uno tiene un número impar de lados, los otros dos polígonos deben ser iguales. De lo contrario, deben rodear alternativamente el primer polígono, lo que es imposible con un lado impar de los lados. De acuerdo con estas restricciones, las siguientes seis opciones no pueden estar presentes en ningún mosaico de polígono regular:
3 . 7 . 42 |
3.8._ _ _ 24 |
3.9._ _ _ Dieciocho |
3.10 ._ _ quince |
4.5 . veinte |
5.5.10 |
Estos cuatro se pueden utilizar en k - mosaicos homogéneos:
Tipos de vértices válidos |
3 2 .4.12 |
3.4.3.12 |
3 2 .6 2 |
3.4 2.6 _ |
---|---|---|---|---|
Ejemplos de mosaicos
2-homogéneos |
de 3 6 |
del 3.12.12 |
con (3.6) 2 |
con (3.6) 2 |
Algunos de los k - alicatados homogéneos se pueden obtener cortando simétricamente la teja del alicatado con aristas interiores, por ejemplo:
Hexágono | Dodecágono |
---|
Algunos polígonos k-homogéneos se pueden obtener cortando polígonos regulares con nuevos vértices en los bordes originales, por ejemplo:
triángulo | cuadrado | hexágono |
---|
Hay veinte mosaicos 2-homogéneos en el plano euclidiano (también llamados mosaicos 2 - isogonales o mosaicos semirregulares ) [3] [4] [5] .
p6m, *632 | p4m, *442 | |||||
---|---|---|---|---|---|---|
[3 6 ; 3 2 .4.3.4] (t=3, e=3) |
[3.4.6.4; 3 2 .4.3.4] (t=4, e=4) |
[3.4.6.4; 3 3 .4 2 ] (t=4, e=4) |
[3.4.6.4; 3,4 2,6 ] (t=5, e=5) |
[4.6.12; 3.4.6.4] (t=4, e=4) |
[3 6 ; 3 2 .4.12] (t=4, e=4) |
[3.12.12; 3.4.3.12] (t=3, e=3) |
p6m, *632 | p6,632 | p6,632 | mmm, 2*22 | pmm, *2222 | mmm, 2*22 | pmm, *2222 |
[3 6 ; 3 2 .6 2 ] (t=2, e=3) |
[3 6 ; 3 4 .6] 1 (t=3, e=3) |
[3 6 ; 3 4 .6] 2 (t=5, e=7) |
[3 2 .6 2 ; 3 4 .6] (t=2, e=4) |
[3.6.3.6; 3 2 .6 2 ] (t=2, e=3) |
[3.4 2.6 ; 3.6.3.6] 2 (t=3, e=4) |
[3.4 2.6 ; 3.6.3.6] 1 (t=4, e=4) |
p4g, 4*2 | pgg, 2× | mmm, 2*22 | mmm, 2*22 | pmm, *2222 | mmm, 2*22 | |
[3 3 .4 2 ; 3 2 .4.3.4] 1 (t=4, e=5) |
[3 3 .4 2 ; 3 2 .4.3.4] 2 (t=3, e=6) |
[4 4 ; 3 3 .4 2 ] 1 (t=2, e=4) |
[4 4 ; 3 3 .4 2 ] 2 (t=3, e=5) |
[3 6 ; 3 3 .4 2 ] 1 (t=3, e=4) |
[3 6 ; 3 3 .4 2 ] 2 (t=4, e=5) |
Hay 61 mosaicos 3-uniformes del plano euclidiano. 39 son 3-Arquímedes con 3 tipos diferentes de vértices, y 22 tienen 2 tipos idénticos de vértices en diferentes órbitas de simetría [6] .
3-teselado homogéneo, 3 tipos de vértices[3.4 2 6; 3.6.3.6; 4.6.12] (t=6, e=7) |
[3 6 ; 3 2 4,12; 4.6.12] (t=5, e=6) |
[3 2 4.12; 3.4.6.4; 3.12 2 ] (t=5, e=6) |
[3.4.3.12; 3.4.6.4; 3.12 2 ] (t=5, e=6) |
[3 3 4 2 ; 3 2 4,12; 3.4.6.4] (t=6, e=8) |
[3 6 ; 3 3 4 2 ; 3 2 4.12] (t=6, e=7) |
[3 6 ; 3 2 4.3.4; 3 2 4.12] (t=5, e=6) |
[3 4 6; 3 3 4 2 ; 3 2 4.3.4] (t=5, e=6) |
[3 6 ; 3 2 4.3.4; 3.4 2 6] (t=5, e=6) |
[3 6 ; 3 2 4.3.4; 3.4.6.4] (t=5, e=6) |
[3 6 ; 3 3 4 2 ; 3.4.6.4] (t=6, e=6) |
[3 6 ; 3 2 4.3.4; 3.4.6.4] (t=6, e=6) |
[3 6 ; 3 3 4 2 ; 3 2 4.3.4] (t=4, e=5) |
[3 2 4.12; 3.4.3.12; 3.12 2 ] (t=4, e=7) |
[3.4.6.4; 3,4 2 6; 4 4 ] (t=3, e=4) |
[3 2 4.3.4; 3.4.6.4; 3.4 2 6] (t=4, e=6) |
[3 3 4 2 ; 3 2 4.3.4; 4 4 ] (t=4, e=6) |
[3.4 2 6; 3.6.3.6; 4 4 ] (t=5, e=7) |
[3.4 2 6; 3.6.3.6; 4 4 ] (t=6, e=7) |
[3.4 2 6; 3.6.3.6; 4 4 ] (t=4, e=5) |
[3.4 2 6; 3.6.3.6; 4 4 ] (t=5, e=6) |
[3 3 4 2 ; 3 2 6 2 ; 3.4 2 6] (t=5, e=8) |
[3 2 6 2 ; 3,4 2 6; 3.6.3.6] (t=4, e=7) |
[3 2 6 2 ; 3,4 2 6; 3.6.3.6] (t=5, e=7) |
[3 4 6; 3 3 4 2 ; 3.4 2 6] (t=5, e=7) |
[3 2 6 2 ; 3.6.3.6; 6 3 ] (t=4, e=5) |
[3 2 6 2 ; 3.6.3.6; 6 3 ] (t=2, e=4) |
[3 4 6; 3 2 6 2 ; 6 3 ] (t=2, e=5) |
[3 6 ; 3 2 6 2 ; 6 3 ] (t=2, e=3) |
[3 6 ; 3 4 6; 3 2 6 2 ] (t=5, e=8) |
[3 6 ; 3 4 6; 3 2 6 2 ] (t=3, e=5) |
[3 6 ; 3 4 6; 3 2 6 2 ] (t=3, e=6) |
[3 6 ; 3 4 6; 3.6.3.6] (t=5, e=6) |
[3 6 ; 3 4 6; 3.6.3.6] (t=4, e=4) |
[3 6 ; 3 4 6; 3.6.3.6] (t=3, e=3) |
[3 6 ; 3 3 4 2 ; 4 4 ] (t=4, e=6) |
[3 6 ; 3 3 4 2 ; 4 4 ] (t=5, e=7) |
[3 6 ; 3 3 4 2 ; 4 4 ] (t=3, e=5) |
[3 6 ; 3 3 4 2 ; 4 4 ] (t=4, e=6) |
[(3.4.6.4)2; 3.4 2 6] (t=6, e=6) |
[(3 6 )2; 3 4 6] (t=3, e=4) |
[(3 6 )2; 3 4 6] (t=5, e=5) |
[(3 6 )2; 3 4 6] (t=7, e=9) |
[3 6 ; (3 4 6)2] (t=4, e=6) |
[3 6 ; (3 2 4.3.4)2] (t=4, e=5) |
[(3.4 2 6) 2; 3.6.3.6] (t=6, e=8) |
[3.4 2 6; (3.6.3.6)2] (t=4, e=6) |
[3.4 2 6; (3.6.3.6)2] (t=5, e=6) |
[3 2 6 2 ; (3.6.3.6)2] (t=3, e=5) |
[(3 4 6)2; 3.6.3.6] (t=4, e=7) |
[(3 4 6)2; 3.6.3.6] (t=4, e=7) |
[3 3 4 2 ; (4 4 )2] (t=4, e=7) |
[(3 3 4 2 )2; 4 4 ] (t=5, e=7) |
[3 3 4 2 ; (4 4 )2] (t=3, e=6) |
[(3 3 4 2 )2; 4 4 ] (t=4, e=6) |
[(3 3 4 2 )2; 3 2 4.3.4] (t=5, e=8) |
[3 3 4 2 ; (3 2 4.3.4)2] (t=6, e=9) |
[3 6 ; (3 3 4 2 )2] (t=5, e=7) |
[3 6 ; (3 3 4 2 )2] (t=4, e=6) |
[(3 6 )2; 3 3 4 2 ] (t=6, e=7) |
[(3 6 )2; 3 3 4 2 ] (t=5, e=6) |
Hay 151 mosaicos de 4 uniformes del plano euclidiano. La investigación de Brian Galebach reprodujo la lista de Krotenheerdt de 33 mosaicos de 4 uniformes con 4 tipos de vértices diferentes, 85 mosaicos con 3 tipos de vértices y 33 mosaicos con 2 tipos de vértices.
4-teselado homogéneo, 4 tipos de vérticesHay 34 mosaicos con 4 tipos de vértices.
[33434; 3 2 6 2 ; 3446; 6 3 ] |
[3 3 4 2 ; 3 2 6 2 ; 3446; 46.12] |
[33434; 3 2 6 2 ; 3446; 46.12] |
[3 6 ; 3 3 4 2 ; 33434; 334.12] |
[3 6 ; 33434; 334.12; 3.12 2 ] |
[3 6 ; 33434; 343.12; 3.12 2 ] |
[3 6 ; 3 3 4 2 ; 33434; 3464] |
[3 6 ; 3 3 4 2 ; 33434; 3464] |
[3 6 ; 33434; 3464; 3446] |
[3 4 6; 3 2 6 2 ; 3636; 6 3 ] |
[3 4 6; 3 2 6 2 ; 3636; 6 3 ] |
[334.12; 343.12; 3464; 46.12] |
[3 3 4 2 ; 334.12; 343.12; 3.12 2 ] |
[3 3 4 2 ; 334.12; 343.12; 4 4 ] |
[3 3 4 2 ; 334.12; 343.12; 3.12 2 ] |
[3 6 ; 3 3 4 2 ; 33434; 4 4 ] |
[33434; 3 2 6 2 ; 3464; 3446] |
[3 6 ; 3 3 4 2 ; 3446; 3636] |
[3 6 ; 3 4 6; 3446; 3636] |
[3 6 ; 3 4 6; 3446; 3636] |
[3 6 ; 3 4 6; 3 3 4 2 ; 3446] |
[3 6 ; 3 4 6; 3 3 4 2 ; 3446] |
[3 6 ; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; 3636] |
[3 3 4 2 ; 3 2 6 2 ; 3446; 6 3 ] |
[3 3 4 2 ; 3 2 6 2 ; 3446; 6 3 ] |
[3 2 6 2 ; 3446; 3636; 4 4 ] |
[3 2 6 2 ; 3446; 3636; 4 4 ] |
[3 2 6 2 ; 3446; 3636; 4 4 ] |
[3 2 6 2 ; 3446; 3636; 4 4 ] |
Hay 85 mosaicos con 3 tipos de vértices.
[3464; (3446)2; 46.12] |
[3464; 3446; (46.12)2] |
[334.12; 3464; (3.12 2 )2] |
[343.12; 3464; (3.12 2 )2] |
[33434; 343.12; (3464)2] |
[(3 6 )2; 3 3 4 2 ; 334.12] |
[(3464)2; 3446; 3636] |
[3464; 3446; (3636)2] |
[3464; (3446)2; 3636] |
[(3 6 )2; 3 3 4 2 ; 33434] |
[(3 6 )2; 3 3 4 2 ; 33434] |
[3 6 ; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 2 6 2 ; (6 3 )2] |
[3 6 ; (3 2 6 2 )2; 6 3 ] |
[3 6 ; (3 2 6 2 )2; 6 3 ] |
[3 6 ; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 2 6 2 ; (6 3 )2] |
[3 6 ; (3 4 6)2; 3 2 6 2 ] |
[3 6 ; (3 2 6 2 )2; 3636] |
[(3 4 6)2; 3 2 6 2 ; 6 3 ] |
[(3 4 6)2; 3 2 6 2 ; 6 3 ] |
[3 4 6; 3 2 6 2 ; (3636)2] |
[3 4 6; 3 2 6 2 ; (3636)2] |
[3 3 4 2 ; 33434; (3464)2] |
[3 6 ; 33434; (3464)2] |
[3 6 ; (33434)2; 3464] |
[3 6 ; (3 3 4 2 )2; 3464] |
[(3464)2; 3446; 3636] |
[3 4 6; (33434)2; 3446] |
[3 6 ; 3 3 4 2 ; (33434)2] |
[3 6 ; 3 3 4 2 ; (33434)2] |
[(3 3 4 2 )2; 33434; 4 4 ] |
[(3 3 4 2 )2; 33434; 4 4 ] |
[3464; (3446)2; 4 4 ] |
[33434; (334.12)2; 343.12] |
[3 6 ; (3 2 6 2 )2; 6 3 ] |
[3 6 ; (3 2 6 2 )2; 6 3 ] |
[3 6 ; 3 4 6; (3 2 6 2 )2] |
[(3 6 )2; 3 4 6; 3 2 6 2 ] |
[(3 6 )2; 3 4 6; 3 2 6 2 ] |
[(3 6 )2; 3 4 6; 3636] |
[3 4 6; (3 2 6 2 )2; 3636] |
[3 4 6; (3 2 6 2 )2; 3636] |
[(3 4 6)2; 3 2 6 2 ; 3636] |
[(3 4 6)2; 3 2 6 2 ; 3636] |
[3 6 ; 3 4 6; (3636)2] |
[3 2 6 2 ; (3636)2; 6 3 ] |
[3 2 6 2 ; (3636)2; 6 3 ] |
[(3 2 6 2 )2; 3636; 6 3 ] |
[3 2 6 2 ; 3636; (6 3 )2] |
[3 4 6; 3 2 6 2 ; (6 3 )2] |
[3 4 6; (3 2 6 2 )2; 3636] |
[3 2 6 2 ; 3446; (3636)2] |
[3 2 6 2 ; 3446; (3636)2] |
[3 4 6; (3 3 4 2 )2; 3636] |
[3 4 6; (3 3 4 2 )2; 3636] |
[3 4 6; 3 3 4 2 ; (3446)2] |
[3446; 3636; (4 4 )2] |
[3446; 3636; (4 4 )2] |
[3446; 3636; (4 4 )2] |
[3446; 3636; (4 4 )2] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[(3446)2; 3636; 4 4 ] |
[3446; (3636)2; 4 4 ] |
[3446; (3636)2; 4 4 ] |
[3446; (3636)2; 4 4 ] |
[3446; (3636)2; 4 4 ] |
[3 6 ; 3 3 4 2 ; (4 4 )2] |
[3 6 ; 3 3 4 2 ; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; 4 4 ] |
[3 6 ; 3 3 4 2 ; (4 4 )2] |
[3 6 ; 3 3 4 2 ; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; 4 4 ] |
[3 6 ; (3 3 4 2 )2; 4 4 ] |
[3 6 ; (3 3 4 2 )2; 4 4 ] |
[(3 6 )2; 3 3 4 2 ; 4 4 ] |
[(3 6 )2; 3 3 4 2 ; 4 4 ] |
[(3 6 )2; 3 3 4 2 ; 4 4 ] |
[(3 6 )2; 3 3 4 2 ; 4 4 ] |
Hay 33 mosaicos con 2 tipos de vértices, 12 con una proporción de tipos de mosaico de 2:2 y 21 con una proporción de (3:1).
[(3464)2; (46.12)2] |
[(33434)2; (3464)2] |
[(33434)2; (3464)2] |
[(3 4 6)2; (3636)2] |
[(3 6 )2; (3 4 6)2] |
[(3 3 4 2 )2; (33434)2] |
[(3 3 4 2 )2; (4 4 )2] |
[(3 3 4 2 )2; (4 4 )2] |
[(3 3 4 2 )2; (4 4 )2] |
[(3 6 )2; (3 3 4 2 )2] |
[(3 6 )2; (3 3 4 2 )2] |
[(3 6 )2; (3 3 4 2 )2] |
[343.12; (3.12 2 )3] |
[(3 4 6)3; 3636] |
[3 6 ; (3 4 6)3] |
[(3 6 )3; 3 4 6] |
[(3 6 )3; 3 4 6] |
[(3 3 4 2 )3; 33434] |
[3 3 4 2 ; (33434)3] |
[3446; (3636)3] |
[3446; (3636)3] |
[3 2 6 2 ; (3636)3] |
[3 2 6 2 ; (3636)3] |
[3 3 4 2 ; (4 4 )3] |
[3 3 4 2 ; (4 4 )3] |
[(3 3 4 2 )3; 4 4 ] |
[(3 3 4 2 )3; 4 4 ] |
[(3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3] |
[3 6 ; (3 3 4 2 )3] |
[3 6 ; (3 3 4 2 )3] |
[(3 6 )3; 3 3 4 2 ] |
[(3 6 )3; 3 3 4 2 ] |
Hay 332 mosaicos 5-homogéneos en el plano euclidiano. La investigación de Brian Galebach arrojó 332 mosaicos 5 homogéneos con tipos de vértices de 2 a 5. Hay mosaicos 74 con tipos de vértices 2, mosaicos 149 con tipos de vértices 3, mosaicos 94 con tipos de vértices 4 y mosaicos 15 con tipos de vértices 5.
5-teselado homogéneo, 5 tipos de vérticesHay 15 mosaicos 5-homogéneos con 5 tipos de figuras de vértice.
[33434; 3 2 6 2 ; 3464; 3446; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; 3636; 6 3 ] |
[3 6 ; 3 4 6; 3 3 4 2 ; 3446; 46.12] |
[3 4 6; 3 3 4 2 ; 33434; 3446; 4 4 ] |
[3 6 ; 33434; 3464; 3446; 3636] |
[3 6 ; 3 4 6; 3464; 3446; 3636] |
[33434; 334.12; 3464; 3.12.12; 46.12] |
[3 6 ; 3 4 6; 3446; 3636; 4 4 ] |
[3 6 ; 3 4 6; 3446; 3636; 4 4 ] |
[3 6 ; 3 4 6; 3446; 3636; 4 4 ] |
[3 6 ; 3 4 6; 3446; 3636; 4 4 ] |
[3 6 ; 3 3 4 2 ; 3446; 3636; 4 4 ] |
[3 6 ; 3 4 6; 3 3 4 2 ; 3446; 4 4 ] |
[3 6 ; 3 3 4 2 ; 3 2 6 2 ; 3446; 3636] |
[3 6 ; 3 4 6; 3 3 4 2 ; 3 2 6 2 ; 3446] |
Hay 94 mosaicos 5-homogéneos con 4 tipos de vértices.
[3 6 ; 33434; (3446)2; 46.12] |
[3 6 ; 33434; 3446; (46.12)2] |
[3 6 ; 33434; 3464; (46.12)2] |
[3 6 ; 3 3 4 2 ; (334.12)2; 3464] |
[3 6 ; (3 3 4 2 )2; 334.12; 3464] |
[3 6 ; 33434; (334.12)2; 3464] |
[3 6 ; 33434; 334.12; (3.12.12)2] |
[3 6 ; 3 4 6; (3 3 4 2 )2; 334.12] |
[3 6 ; 33434; 343.12; (3.12.12)2] |
[(3 3 4 2 )2; 334.12; 343.12; 3.12.12] |
[(3 3 4 2 )2; 334.12; 343.12; 3.12.12] |
[(3 3 4 2 )2; 334.12; 343.12; 4 4 ] |
[33434; 3 2 6 2 ; (3446)2; 4 4 ] |
[3 6 ; (3 3 4 2 )2; 33434; 4 4 ] |
[3 4 6; (3 3 4 2 )2; 33434; 4 4 ] |
[3 6 ; 3 3 4 2 ; (3464)2; 3446] |
[3 3 4 2 ; 3 2 6 2 ; 3464; (3446)2] |
[33434; 3 2 6 2 ; 3464; (3446)2] |
[3 6 ; 33434; (3446)2; 3636] |
[3 3 4 2 ; 33434; 3464; (3446)2] |
[3 6 ; 33434; (3 2 6 2 )2; 3446] |
[3 3 4 2 ; 3 2 6 2 ; (3464)2; 3446] |
[33434; 3 2 6 2 ; (3464)2; 3446] |
[3 4 6; 3 3 4 2 ; (3464)2; 3446] |
[3 6 ; (3 3 4 2 )2; 33434; 3464] |
[3 6 ; (3 3 4 2 )2; 33434; 3464] |
[3 6 ; 3 3 4 2 ; (33434)2; 3464] |
[(3 6 )2; 3 3 4 2 ; 33434; 3464] |
[3 6 ; 3 3 4 2 ; (33434)2; 3464] |
[(3 6 )2; 3 3 4 2 ; 33434; 334.12] |
[3 6 ; 33434; (334.12)2; 343.12] |
[(3 6 )2; 3 4 6; 3 3 4 2 ; 33434] |
[(3 6 )2; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; (3 4 6)2; 3 2 6 2 ; 6 3 ] |
[(3 6 )2; 3 4 6; 3 2 6 2 ; 3636] |
[3 6 ; 3 4 6; (3 2 6 2 )2; 3636] |
[3 6 ; (3 4 6)2; 3 2 6 2 ; 3636] |
[(3 6 )2; 3 4 6; 3 2 6 2 ; 3636] |
[3 6 ; 3 4 6; 3 2 6 2 ; (3636)2] |
[3 6 ; (3 4 6)2; 3 2 6 2 ; 3636] |
[3 6 ; (3 4 6)2; 3 2 6 2 ; 3636] |
[3 6 ; (3 4 6)2; 3 2 6 2 ; 3636] |
[3 6 ; 3 4 6; (3 2 6 2 )2; 3636] |
[3 6 ; 3 4 6; (3 2 6 2 )2; 3636] |
[3 6 ; 3 4 6; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 4 6; (3 2 6 2 )2; 6 3 ] |
[3 4 6; (3 2 6 2 )2; 3636; 6 3 ] |
[(3 4 6)2; 3 2 6 2 ; 3636; 6 3 ] |
[(3 6 )2; 3 4 6; 3 2 6 2 ; 6 3 ] |
[(3 6 )2; 3 4 6; 3 2 6 2 ; 6 3 ] |
[3 6 ; 3 4 6; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 4 6; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 4 6; 3 2 6 2 ; (6 3 )2] |
[3 6 ; 3 4 6; (3 2 6 2 )2; 6 3 ] |
[3 4 6; (3 2 6 2 )2; 3636; 6 3 ] |
[3 4 6; (3 2 6 2 )2; 3636; 6 3 ] |
[3 4 6; (3 2 6 2 )2; 3636; 6 3 ] |
[3 4 6; 3 2 6 2 ; 3636; (6 3 )2] |
[3 4 6; (3 2 6 2 )2; 3636; 6 3 ] |
[3 3 4 2 ; 3 2 6 2 ; 3446; (6 3 )2] |
[3 3 4 2 ; 3 2 6 2 ; 3446; (6 3 )2] |
[3 2 6 2 ; 3446; 3636; (4 4 )2] |
[3 2 6 2 ; 3446; 3636; (4 4 )2] |
[3 2 6 2 ; 3446; (3636)2; 4 4 ] |
[3 2 6 2 ; 3446; (3636)2; 4 4 ] |
[3 3 4 2 ; 3 2 6 2 ; 3446; (4 4 )2] |
[3 4 6; 3 3 4 2 ; 3446; (4 4 )2] |
[3 2 6 2 ; 3446; 3636; (4 4 )2] |
[3 2 6 2 ; 3446; 3636; (4 4 )2] |
[3 2 6 2 ; 3446; (3636)2; 4 4 ] |
[3 2 6 2 ; 3446; (3636)2; 4 4 ] |
[3 3 4 2 ; 3 2 6 2 ; 3446; (4 4 )2] |
[3 4 6; 3 3 4 2 ; 3446; (4 4 )2] |
[3 4 6; (3 3 4 2 )2; 3636; 4 4 ] |
[3 6 ; 3 3 4 2 ; (3446)2; 3636] |
[3 4 6; (3 3 4 2 )2; 3446; 3636] |
[3 4 6; (3 3 4 2 )2; 3446; 3636] |
[(3 6 )2; 3 4 6; 3446; 3636] |
[3 6 ; 3 3 4 2 ; (3446)2; 3636] |
[3 4 6; (3 3 4 2 )2; 3446; 3636] |
[3 4 6; (3 3 4 2 )2; 3446; 3636] |
[(3 6 )2; 3 4 6; 3446; 3636] |
[(3 6 )2; 3 3 4 2 ; 3446; 3636] |
[3 6 ; 3 3 4 2 ; 3446; (3636)2] |
[3 4 6; 3 3 4 2 ; (3446)2; 3636] |
[3 6 ; 3 4 6; (3 3 4 2 )2; 3446] |
[3 4 6; (3 3 4 2 )2; 3 2 6 2 ; 3636] |
[3 4 6; (3 3 4 2 )2; 3 2 6 2 ; 3636] |
[3 6 ; (3 4 6)2; 3 3 4 2 ; 3446] |
[3 6 ; (3 4 6)2; 3 3 4 2 ; 3446] |
[3 6 ; (3 4 6)2; 3 3 4 2 ; 3446] |
[3 6 ; 3 4 6; (3 3 4 2 )2; 3 2 6 2 ] |
[(3 6 )2; 3 4 6; 3 3 4 2 ; 3636] |
[(3 6 )2; 3 4 6; 3 3 4 2 ; 3636] |
Hay 149 mosaicos 5-homogéneos con tres tipos de vértices, de los cuales 60 tienen tipos de vértices en una proporción de 3:1:1 y 89 tienen una proporción de 2:2:1.
[3 6 ; 334.12; (46.12)3] |
[(3 6 )2; (3 3 4 2 )2; 3464] |
[(3 3 4 2 )2; 334.12; (3464)2] |
[3 6 ; (33434)2; (3464)2] |
[3 3 4 2 ; (33434)2; (3464)2] |
[3 3 4 2 ; (33434)2; (3464)2] |
[3 3 4 2 ; (33434)2; (3464)2] |
[(33434)2; 343.12; (3464)2] |
[3464; 3446; (46.12)3] |
[3 6 ; (334.12)3; 46.12] |
[334.12; 343.12; (3.12.12)3] |
[3 6 ; (33434)3; 343.12] | |||
[3 2 6 2 ; 3636; (6 3 )3] |
[3 4 6; 3 2 6 2 ; (6 3 )3] |
[3 6 ; (3 2 6 2 )3; 6 3 ] |
[3 6 ; (3 2 6 2 )3; 6 3 ] |
[3 2 6 2 ; (3636)3; 6 3 ] |
[3446; 3636; (4 4 )3] |
[3446; 3636; (4 4 )3] |
[3 6 ; 3 3 4 2 ; (4 4 )3] |
[3 6 ; 3 3 4 2 ; (4 4 )3] |
[3446; (3636)3; 4 4 ] |
[3446; (3636)3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[(3 6 )3; 3 3 4 2 ; 4 4 ] |
[(3 6 )3; 3 3 4 2 ; 4 4 ] |
[3446; 3636; (4 4 )3] |
[3446; 3636; (4 4 )3] |
[3 6 ; 3 3 4 2 ; (4 4 )3] |
[3 6 ; 3 3 4 2 ; (4 4 )3] |
[(3 3 4 2 )3; 3 2 6 2 ; 3446] |
[3 2 6 2 ; 3446; (3636)3] |
[3 2 6 2 ; 3446; (3636)3] |
[3 2 6 2 ; 3446; (3636)3] |
[3 2 6 2 ; 3446; (3636)3] |
[3446; (3636)3; 4 4 ] |
[3446; (3636)3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[(3 6 )3; 3 3 4 2 ; 4 4 ] |
[(3 6 )3; 3 3 4 2 ; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[3 6 ; (3 3 4 2 )3; 4 4 ] |
[(3 3 4 2 )3; 3446; 3636] |
[(3 3 4 2 )3; 3446; 3636] |
[3 4 6; (3 3 4 2 )3; 3446] |
[(3 6 )3; 3 4 6; 3 2 6 2 ] |
[(3 6 )3; 3 4 6; 3 2 6 2 ] |
[(3 6 )3; 3 4 6; 3 2 6 2 ] |
[3 4 6; (3 2 6 2 )3; 3636] |
[3 4 6; (3 2 6 2 )3; 3636] |
[(3 4 6)3; 3 2 6 2 ; 3636] |
[(3 4 6)3; 3 2 6 2 ; 3636] |
[(3 6 )3; 3 4 6; 3 2 6 2 ] |
[(3 6 )3; 3 4 6; 3 2 6 2 ] |
[(3 4 6)3; 3 2 6 2 ; 3636] |
[3 6 ; 3 4 6; (3636)3] |
[3 6 ; 3 4 6; (3636)3] |
[3 6 ; 3 4 6; (3636)3] |
[3 6 ; 3 4 6; (3636)3] |
[(3 6 )3; 3 4 6; 3636] |
[(3 6 )3; 3 4 6; 3636] |
[3 6 ; (3 4 6)3; 3636] |
[(3446)2; (3636)2; 46.12] |
[3 6 ; (3 2 6 2 )2; (6 3 )2] |
[(3 2 6 2 )2; (3636)2; 6 3 ] |
[(3 4 6)2; (3 2 6 2 )2; 6 3 ] |
[3 6 ; (3 2 6 2 )2; (6 3 )2] |
[(3 6 )2; (3 3 4 2 )2; 33434] |
[(3 6 )2; 3 3 4 2 ; (33434)2] |
[3 4 6; (3 3 4 2 )2; (33434)2] |
[(3 6 )2; 3 3 4 2 ; (33434)2] |
[(3 6 )2; 3 3 4 2 ; (33434)2] |
[(3 2 6 2 )2; 3636; (6 3 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[3446; (3636)2; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[3446; (3636)2; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; (4 4 )2] |
[(3 6 )2; 3 3 4 2 ; (4 4 )2] |
[(3 6 )2; 3 3 4 2 ; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; (4 4 )2] |
[(3 6 )2; (3 3 4 2 )2; 4 4 ] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[3446; (3636)2; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[3446; (3636)2; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; (4 4 )2] |
[(3 6 )2; 3 3 4 2 ; (4 4 )2] |
[(3 6 )2; 3 3 4 2 ; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; (4 4 )2] |
[3 6 ; (3 3 4 2 )2; (4 4 )2] |
[(3446)2; 3636; (4 4 )2] |
[(3 6 )2; (3 3 4 2 )2; 4 4 ] |
[(3 6 )2; (3 3 4 2 )2; 4 4 ] |
[(3 6 )2; (3 3 4 2 )2; 4 4 ] |
[(3 6 )2; (3 3 4 2 )2; 4 4 ] |
[(33434)2; 3 2 6 2 ; (3446)2] |
[3 3 4 2 ; (3 2 6 2 )2; (3446)2] |
[3 3 4 2 ; (3 2 6 2 )2; (3446)2] |
[3 2 6 2 ; (3446)2; (3636)2] |
[(3 2 6 2 )2; 3446; (3636)2] |
[(3 2 6 2 )2; 3446; (3636)2] |
[(3464)2; (3446)2; 3636] |
[3 2 6 2 ; (3446)2; (3636)2] |
[3 2 6 2 ; (3446)2; (3636)2] |
[(3 4 6)2; (3446)2; 3636] |
[(3 4 6)2; (3446)2; 3636] |
[(3 4 6)2; (3446)2; 3636] |
[(3 4 6)2; (3446)2; 3636] |
[(3 3 4 2 )2; (3446)2; 3636] |
[(3 3 4 2 )2; (3446)2; 3636] |
[(3 4 6)2; (3 3 4 2 )2; 3446] |
[(3 4 6)2; 3 3 4 2 ; (3446)2] |
[(3 6 )2; (3 4 6)2; 3 2 6 2 ] |
[3 6 ; (3 4 6)2; (3 2 6 2 )2] |
[(3 6 )2; 3 4 6; (3 2 6 2 )2] | ||
[3 6 ; (3 4 6)2; (3 2 6 2 )2] |
[3 4 6; (3 2 6 2 )2; (3636)2] |
[(3 4 6)2; (3 2 6 2 )2; 3636] |
[3 6 ; (3 4 6)2; (3 2 6 2 )2] |
[(3 4 6)2; 3 2 6 2 ; (3636)2] |
[(3 4 6)2; (3 2 6 2 )2; 3636] |
[(3 6 )2; (3 4 6)2; 3 2 6 2 ] |
[(3 6 )2; (3 4 6)2; 3 2 6 2 ] |
[(3 6 )2; (3 4 6)2; 3636] |
[(3 6 )2; (3 4 6)2; 3636] |
[3 6 ; (3 4 6)2; (3 3 4 2 )2] |
[(3 6 )2; (3 4 6)2; 3 2 6 2 ] |
[3 6 ; (3 4 6)2; (3 2 6 2 )2] |
[3 6 ; (3 4 6)2; (3 2 6 2 )2] |
[3 4 6; (3 3 4 2 )2; (3636)2] |
[3 4 6; (3 3 4 2 )2; (3636)2] |
[(3 6 )2; 3 4 6; (3636)2] |
[(3 6 )2; (3 4 6)2; 3636] |
[(3 6 )2; 3 3 4 2 ; (33434)2] |
Hay 74 mosaicos de 5 uniformes con 2 tipos de vértices, 27 mosaicos con una proporción de 4:1 y 47 mosaicos con una proporción de 3:2 de cada tipo de vértice.
[(3464)4; 46.12] |
[343.12; (3.12.12)4] |
[3 6 ; (33434)4] |
[3 6 ; (33434)4] |
[(3 6 )4; 3 4 6] |
[(3 6 )4; 3 4 6] |
[(3 6 )4; 3 4 6] |
[3 6 ; (3 4 6)4] |
[3 2 6 2 ; (3636)4] |
[(3 4 6) 4; 3 2 6 2 ] |
[(3 4 6) 4; 3 2 6 2 ] |
[(3 4 6) 4; 3636] |
[3 2 6 2 ; (3636)4] |
[3446; (3636)4] |
[3446; (3636)4] |
[(3 3 4 2 )4; 33434] |
[3 3 4 2 ; (33434)4] | |||
[3 3 4 2 ; (4 4 )4] |
[3 3 4 2 ; (4 4 )4] |
[(3 3 4 2 )4; 4 4 ] |
[(3 3 4 2 )4; 4 4 ] |
[(3 3 4 2 )4; 4 4 ] |
[3 6 ; (3 3 4 2 )4] |
[3 6 ; (3 3 4 2 )4] |
[3 6 ; (3 3 4 2 )4] |
[(3 6 )4; 3 3 4 2 ] |
[(3 6 )4; 3 3 4 2 ] |
Hay 29 mosaicos homogéneos de 5 con una relación de vértices de 3:2.
[(3464)2; (46.12)3] |
[(3464)2; (46.12)3] |
[(3464)3; (3446)2] |
[(33434)2; (3464)3] |
[(33434)3; (3464)2] |
[(3 6 )2; (3 4 6)3] |
[(3 6 )2; (3 4 6)3] |
[(3 6 )3; (3 4 6)2] |
[(3 6 )3; (3 4 6)2] |
[(3 6 )3; (3 4 6)2] |
[(3 6 )3; (3 4 6)2] |
[(3 6 )2; (3 4 6)3] |
[(3 6 )2; (3 4 6)3] |
[(3 6 )2; (3 4 6)3] | |
[(3 2 6 2 )2; (3636)3] |
[(3 4 6)3; (3636)2] |
[(3 4 6)3; (3636)2] |
[(3 4 6)2; (3636)3] | |
[(3446)3; (3636)2] |
[(3446)2; (3636)3] |
[(3446)3; (3636)2] |
[(3446)2; (3636)3] |
[(3446)2; (3636)3] |
[(3 3 4 2 )3; (33434)2] |
[(3 3 4 2 )3; (33434)2] |
[(3 3 4 2 )2; (33434)3] |
[(3 3 4 2 )2; (33434)3] | |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )3; (4 4 )2] |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )3; (4 4 )2] |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )2; (4 4 )3] |
[(3 3 4 2 )3; (4 4 )2] |
[(3 3 4 2 )3; (4 4 )2] |
[(3 6 )2; (3 3 4 2 )3] |
[(3 6 )2; (3 3 4 2 )3] |
[(3 6 )2; (3 3 4 2 )3] |
[(3 6 )2; (3 3 4 2 )3] |
[(3 6 )3; (3 3 4 2 )2] |
[(3 6 )3; (3 3 4 2 )2] |
[(3 6 )3; (3 3 4 2 )2] |
[(3 6 )3; (3 3 4 2 )2] |
[(3 6 )3; (3 3 4 2 )2] |
[(3 6 )3; (3 3 4 2 )2] |
Las teselaciones k -uniformes se enumeran hasta 6. Hay 673 teselaciones 6-uniformes en el plano euclidiano. La investigación de Brian Galebach reprodujo la lista de Krotenhirdt de 10 mosaicos 6-homogéneos con 6 tipos de vértices diferentes, 92 con 5 tipos de vértices, 187 con 4 tipos de vértices, 284 con 3 tipos de vértices y 100 con 2 tipos de vértices.
Los polígonos regulares convexos pueden formar mosaicos planos cuando los polígonos no están conectados de borde a borde. Dichos mosaicos pueden considerarse mosaicos de borde a borde, pero los polígonos serán irregulares y tendrán bordes que se encuentran en la misma línea.
Hay siete familias con un parámetro que determina la relación de superposición de los bordes de los mosaicos adyacentes o la relación de las longitudes de los bordes de diferentes mosaicos. Estas dos familias están formadas por un desplazamiento de cuadrados, constantes o en zigzag. Grünbaum y Shepard llaman homogéneos a estos mosaicos , aunque esto contradice la definición de homogeneidad de Coxeter, que requiere una conexión de borde a borde [7] . Tales mosaicos equiángulos son, de hecho, topológicamente idénticos a mosaicos uniformes con diferentes proporciones geométricas.
una | 2 | 3 | cuatro | 5 | 6 | 7 |
---|---|---|---|---|---|---|
Filas de cuadriláteros con desplazamientos horizontales |
Filas de Triángulos con Desplazamientos Horizontales |
Mosaico de cuadrados |
Tres hexágonos que rodean cada triángulo. |
Seis triángulos que rodean cada hexágono. |
Triángulos en tres tamaños | |
mmm (2*22) | p2 (2222) | mmm (2*22) | p4m (*442) | p6 (632) | p3 (333) | |
mosaico hexagonal | Mosaico cuadrado (degenerado) | Parquet cuadrado truncado | Parquet hexagonal truncado | mosaico hexagonal | Mosaico Trihexagonal |
Enlaces de teselas generales y euclidianas:
mosaicos geometricos | |||||||||
---|---|---|---|---|---|---|---|---|---|
Periódico |
| ||||||||
aperiódico |
| ||||||||
Otro |
| ||||||||
Por configuración de vértice |
|