Poliedro

Un poliedro o poliedro suele ser una superficie cerrada formada por polígonos , pero en ocasiones también se denomina a un cuerpo acotado por esta superficie.

Definición

Poliedro , más precisamente un poliedro tridimensional  : un conjunto de un número finito de polígonos planos en un espacio euclidiano tridimensional , tal que:

  1. cada lado de cualquiera de los polígonos es al mismo tiempo el lado del otro (pero sólo uno), llamado adyacente al primero (a lo largo de este lado);
  2. Conectividad : desde cualquiera de los polígonos que forman el poliedro, se puede llegar a cualquiera de ellos yendo al contiguo a este, y de este, a su vez, al contiguo, etc.

Estos polígonos se llaman caras , sus lados se llaman aristas y sus vértices se llaman vértices del poliedro [1] .

El ejemplo más simple de un politopo es un politopo convexo, es decir, el límite de un subconjunto tan limitado del espacio euclidiano, que es la intersección de un número finito de semiespacios.

Opciones de significado

La definición dada de un poliedro adquiere un significado diferente dependiendo de cómo se defina el polígono , para lo cual son posibles las siguientes dos opciones:

En el primer caso, obtenemos el concepto de estrella poliédrica . En el segundo, un poliedro es una superficie compuesta por piezas poligonales. Si esta superficie no se corta a sí misma, entonces es la superficie completa de algún cuerpo geométrico, que también se llama poliedro. De ahí surge la tercera definición del poliedro, como el propio cuerpo geométrico.

Definiciones relacionadas

Un poliedro con n caras se llama n -edro. En particular, un tetraedro es un tetraedro, un dodecaedro es un dodecaedro, un icosaedro es uno de veinte lados, etc.

Poliedro convexo

Un poliedro se dice convexo si está todo situado a un lado del plano de cada una de sus caras.

Para un poliedro convexo , se cumple el teorema de Euler B + G − P = 2, donde B es el número de vértices del poliedro, G es el número de caras, P es el número de aristas.

Variaciones y generalizaciones

Véase también

Notas

  1. Selivanov D. F .,. Cuerpo geométrico // Diccionario enciclopédico de Brockhaus y Efron  : en 86 volúmenes (82 volúmenes y 4 adicionales). - San Petersburgo. , 1890-1907.

Literatura